
1

Concurrent Architectures

Architectures can be classified based on multiplicity of instruction and data
streams (Flynn’s taxonomy):

Single Instruction stream, Single Data Stream (SISD)

Serial processing

Control Processor Memory

IS

IS DS

Engineering 8893: Architectures & Applications January 7, 2004

2

SI, Multiple Data Stream (SIMD) (Synchronous Mulitprocessor)

Processor Memory

Processor

Control

Processor

DS

IS

IS ...

DS

DS

– All processors execute same instruction.
– Global clock.
– Well suited to data-parallel algorithms (e.g., Array operations, DSP)

Engineering 8893: Architectures & Applications January 7, 2004

3

MIMD Multi-Processor System

CPU cache

CPU cache CPUcache

Memory

CPUcache

– Can use general purpose CPU.
– More complicated inter-processor communication.
– Processors communicate for synchronization.
– General purpose.

Engineering 8893: Architectures & Applications January 7, 2004

4

Memory Architectures

Shared Memory

• All processors ’see’ the same address space.

• Actual memory may be shared or distributed.

• More flexibility in programming (message passing can be emulated).

• Uniform (symmetric) memory access (UMA):

– Bus or crossbar connection.
– Good for system with small number of processors (< 30).

• Non-uniform memory access (NUMA):

– Each processor has quicker access to some memory than others.
– Tree-structured interconnection.
– Reduces congestion in interconnection network.

Engineering 8893: Architectures & Applications January 7, 2004



5

Atomic Actions

process p1
x := x + 1

end

process p2
x := x + 1

end

What is the final value of x?

P1 P2 P1 P2
LOAD x r1 INC x

LOAD x r1 INC x
ADD r1 #1 or

ADD r1 #1
STORE r1 x

STORE r1 x

Engineering 8893: Architectures & Applications January 7, 2004

6

Cache Problems

Caching complicates things — processes may see updates at different times
or in different orders.

process p1
x := x + 1

end

process p2
y := y + 1

end

False sharing — If x and y are in the same cache line then they are
effectively shared. (We hope this is looked after by the cache hardware, but
it might make processing slower.)

Engineering 8893: Architectures & Applications January 7, 2004

7

Distributed memory

(a.k.a. message passing, multicomputers)

• Each processor has private memory.

• Communication by message passing.

• Not good if processes must share large amounts of data.

Multicomputer — Distributed-memory multiprocessor with all processors
and memory co-located.
– a.k.a. tightly coupled machine
– typically requires specialized hardware

Network system — Connected by LAN or WAN.
– Generic hardware.
– Network of workstations (NOW), Cluster of workstations (COW).

Engineering 8893: Architectures & Applications January 7, 2004

8

Software Architectures
Multithreaded Systems

– Typically more processes than processors.
– Divide overall (set of) problem(s) into (mostly) independent tasks —

makes programming less complicated.
– Usually shared memory.

Distributed Systems

– E.g., data or application is physically distributed, or for fault tolerance.

Parallel Computations

– Solve bigger problems faster by using more than one processor.
– Data parallel — each process does the same thing on part of the data.
– Task parallel — different processes carry out different tasks.

Engineering 8893: Architectures & Applications January 7, 2004



9

Iterative Parallelism
• Program with several, often identical process, each containing loops.

• Typical for scientific computations.

Example: Matrix Multiplication

Compute c = a * b, where a, b and c are n × n matricies. (n2 inner
products)

Sequential version: double a[n,n], b[n,n], c[n,n];
for [i = 0 to n-1] {

for [j = 0 to n-1] {
c[i,j] = 0.0;
for [k = 0 to n-1]

c[i,j] = c[i,j] + a[i,k] * b[k,j];
}

}

Engineering 8893: Architectures & Applications January 7, 2004

10

Aside: Independence

read set — variables that an operation reads but does not modify.

write set — variables that an operation modifies (may also read).

Operations can be executed in parallel if they are independent.

It’s always safe for processes to read variables that do not change.

Not safe (in general) if both write, or one writes and the other reads.

Processes a and b are independent iff

(Wa ∩ (Wb ∪Rb) = � ∧Wb ∩ (Wa ∪Ra) = �)

Engineering 8893: Architectures & Applications January 7, 2004

11

In the matrix mulitiplication algorithm, each of the n2 iterations of the dot
product computation is independent of all the others so:

double a[n,n], b[n,n], c[n,n];
co [i = 0 to n-1] { # All rows in parallel

co [j = 0 to n-1] { # All columns in parallel
c[i,j] = 0.0;
for [k = 0 to n-1]

c[i,j] = c[i,j] + a[i,k] * b[k,j];
}

}

But if there are less than n2 processors then this is wasteful. Having more
processes than processors will slow down computation.

Engineering 8893: Architectures & Applications January 7, 2004

12

A better version: P workers, each of which computes a horizontal strip of
c:

process worker[w = 1 to P] {
int first = (w-1) * n/P; # first row of strip
int last = first + n/P - 1; # last row of strip
for [i = first to last] {

for [j = 0 to n-1] {
c[i,j] = 0.0;
for [k = 0 to n-1]

c[i,j] = c[i,j] + a[i,k] * b[k,j];
}

}
}

Engineering 8893: Architectures & Applications January 7, 2004



13

Recursive Parallelism

If a sequence of calls (recursive or not) are independent, then they can run
in parallel.

Independent recursive procedures:

• At most read global (shared) variables.

• Reference/result parameters are distinct.

Engineering 8893: Architectures & Applications January 7, 2004

14

Example: Adaptive Quadrature

Estimate the area under a curve, f(x), on an interval [a, b].

double quad(double left, right, fleft, fright, lrarea) {
double mid = (left + right) / 2;
double fmid = f(mid);
double larea = (fleft + fmid) * (mid - left) / 2;
double rarea = (fmid + fright) * (right - mid) / 2;
if ((abs(larea+rarea) - lrarea) > EPSILON) {

larea = quad(left, mid, fleft, fmid, larea);
rarea = quad(mid, right, fmid, fright, rarea);

}
return larea + rarea;

}

Engineering 8893: Architectures & Applications January 7, 2004

15

Since recursive calls only use local variables and value parameters, we can
do them in parallel.

double quad(double left, right, fleft, fright, lrarea) {
double mid = (left + right) / 2;
double fmid = f(mid);
double larea = (fleft + fmid) * (mid - left) / 2;
double rarea = (fmid + fright) * (right - mid) / 2;
if ((abs(larea+rarea) - lrarea) > EPSILON) {

co
larea = quad(left, mid, fleft, fmid, larea);
// rarea = quad(mid, right, fmid, fright, rarea);

oc
}
return larea + rarea;

}

Engineering 8893: Architectures & Applications January 7, 2004

16

Producers & Consumers (pipelines)

• Processes may act as filters — consuming output from upstream process
and producing for downstream.

• Example: Unix pipe.

sed -f Script $* | tbl | eqn | groff Macros -

Pipe acts as bounded FIFO queue.

Engineering 8893: Architectures & Applications January 7, 2004



17

Clients & Servers

• Dominant pattern for distributed systems.

• Distributed analog to procedure call.

• Examples: (Remote) File systems, http, ftp, telnet

• Servers may service multiple clients, possibly concurrently.

Engineering 8893: Architectures & Applications January 7, 2004

18

Peers
• Similar distributed processes cooperate to accomplish a task.

Example: Distributed Matrix Multiplication

process worker[i = 0 to n-1] {
double a[n]; # row i of a
doubel b[n]; # one column of b
double c[n]; # row i of c (result)
double sum = 0.0;
int nextCol = i;
receive row i of a and column i of b;
for [k = 0 to n-1] sum = sum + a[k] * b[k];
c[nextCol] = sum;
for [j = 1 to n-1] {

send b to worker[(i+1)%n];
receive column of b from worker[(i+(n-1))%n];
sum = 0.0;

Engineering 8893: Architectures & Applications January 7, 2004

19

for [k = 0 to n-1] sum = sum + a[k] * b[k];
nextCol = (nextCol + (n-1))%n;
c[nextCol] = sum;

}
send c to coordinator

}

Engineering 8893: Architectures & Applications January 7, 2004


