
1

Distributed Programming

• Processes don’t share memory.

• May be connected by arbitrary network.

• Message-passing primitives provide means of communicating.

• Blocking or non-blocking

• Processes share channels over which messages are passed (send and
receive).

• Global, receiver specific, or sender & receiver specific.
• One or two way.

Engineering 8893: Message Passing March 9, 2004

2

Distributed Paradigms

Filter Data translator— Read input stream, write to output stream.

Client Active (triggering) process— Request service, often wait for
response.

Server Reactive process— Wait for request, respond.

Peer Co-operating process.

Engineering 8893: Message Passing March 9, 2004

3

Asynchronous Message Passing

chan ch(type1 v1, type2 v2 ...);

send ch(x1, x2 ...);

receive ch(y1, y2 ...);

empty(ch);

• Channels are unbounded queues (model as sequences).

• Non-blocking send.

• Blocking receive.

Since receive is the only blocking call, deadlock can only occur there
(when channel is empty — use empty to check).

Engineering 8893: Message Passing March 9, 2004

4

Filter: Mergesort

Problem: Sort a list of values

Filter Process:

• receive two sorted lists from two channels

• send a sorted combined list to another channel

Solution: Network filters in a tree structure

Engineering 8893: Message Passing March 9, 2004



5

Mergesort

chan in1(int), in2(int), out(int);

process Merge {
int v1, v2;
receive in1(v1);
receive in2(v2);

while (v1 != EOS and v2 != EOS) {
if (v1 <= v2) {

send out(v1); receive in1(v1);
} else {

send out(v2); receive in2(v2);
}

}
if (v1 == EOS) {

while (v2 != EOS) {

Engineering 8893: Message Passing March 9, 2004

6

send out(v2); receive in2(v2);
}

}
if (v2 == EOS) {

while (v1 != EOS) {
send out(v1); receive in1(v1);

}
}
send out(EOS);

}

Engineering 8893: Message Passing March 9, 2004

7

Client-Server: Monitor

Simulating a monitor using AMP.

chan request(int clientID, op_kind, arg_type);
chan reply[n] (res_type);

process Server { # Montor
while (true) {

receive request(clientid, op, args);
switch (op) {

case OP1: # monitor methods
...

}
send reply[clientid](results);

}
}

Engineering 8893: Message Passing March 9, 2004

8

process Client { # Monitor user
...
send request(i, op, args);
receive reply[i](results);

}

Conditions

Each condition c becomes a queue, qc, local to the server.

wait(c) adds clientID, op etc. to qc

signal(c) removes front from qc, sends results

Engineering 8893: Message Passing March 9, 2004



9

Self Scheduling Disk Server

chan request(Request r);
chan reply[n](Results r);

process Disk_Driver {
Queue pending; # pending requests
while (true) {

while (!empty(request) or empty(pending)) {
receive request(req);
pending.insert(req);

}
pending.getNext(req); # retrieve task to service
access disk
send reply[req.Id](results);

}
}

Engineering 8893: Message Passing March 9, 2004

10

Interacting Peers: Exchanging Values

Task: Determine the largest and smallest value held by processes.

Centralized: Coordinator gathers all, and sends results.

– Asymetric — coordinator does all the work
– 2(n− 1) messages, n channels

Symmetric: Each sends data to all others, receives from all others, then
computes results.

– n(n− 1) messages, 2n channels

Logical Ring: Recv local max, min from prev; Send local max, min to next;
Recv global max, min from prev; Send global max, min to next.

– 2(n− 1) messages, n channels

Engineering 8893: Message Passing March 9, 2004

11

AMP in Java – Sockets

• Two-way channels for Strings.

• ServerSocket – allocates a port for the channel.

• Socket – opens a channel on the port.

– inputStream
– outputStream

Engineering 8893: Message Passing March 9, 2004

12

Server

ServerSocket listen = new ServerSocket(0); // any available socket

Socket socket = listen.accept();
BufferedReader from_client =

new BufferedReader(
new InputStreamReader(socket.getInputStream()));

PrintWriter to_client =
new PrintWriter(socket.getOutputStream());

// use socket
//
to_client.close();
from_client.close();
socket.close();

Engineering 8893: Message Passing March 9, 2004



13

Client

Socket socket = new Socket(host, port);
BufferedReader from_server =

new BufferedReader(new InputStreamReader(socket.getInputStream()));
PrintWriter to_server = new PrintWriter(socket.getOutputStream());

// use socket

socket.close();

Engineering 8893: Message Passing March 9, 2004

14

Synchronous Message Passing

• Non-buffered communication

• sync send blocks until message is received

• Combined communication and synchronization

• Can be viewed as distributed assignment statement.

• Often reduces concurrency — sender or receiver waiting.

• More prone to deadlock.

Engineering 8893: Message Passing March 9, 2004

15

Examples

• Pipelined seive of Eratosthenes

- First number received, pi, is prime
- From remaining values, pass on only if x%pi 6= 0

• Heartbeat compare and exchange sort

- sort my n/k elements
- Odd rounds: if i is odd, P[i] send largest to P[i + 1], receive from
P[i + 1] its smallest.

- Even rounds: if i is even, P[i] send largest to P[i + 1], receive from
P[i + 1] its smallest.

Engineering 8893: Message Passing March 9, 2004


