
1

Implementing Processes

Use Java threads:

1) extend Thread, or

2) implement Runnable

Both have member public void run().

Engineering 8893: Java Threads January 19, 2004

2

class MyThread extends Thread {
// ...

}

class MyRun implements Runnable {
// ...

}

Thread a = new MyThread();
Thread b = new Thread(new MyRun());

a.start(); // causes a.run() to be called
b.start();

Engineering 8893: Java Threads January 19, 2004

3

Lifecycle

• Create.

• start() causes run() to be called.

• Terminate on return from run().

• Thread can give up processor using yield().

• sleep(n) causes thread to be suspend for n milliseconds.

Engineering 8893: Java Threads January 19, 2004

4

public class Shared {

public static void main(String[] args) {
Counter c = new Counter();
Thread a = new Thread(new Increment(c));
Thread b = new Thread(new Increment(c));
a.start();
b.start();
try {

while (a.isAlive()) Thread.sleep(50);
while (b.isAlive()) Thread.sleep(50);

}
catch (InterruptedException e) {}

System.out.println("Counter = " + c.val);
System.exit(0);

}
}

Engineering 8893: Java Threads January 19, 2004



5

class Increment implements Runnable {
private Counter cnt;

Increment(Counter c) {
cnt = c;

}

public void run() {
try {

int tmp;
for (int i = 1; i <= 10; i++) {

tmp = cnt.val;
Thread.sleep((int)Math.round(Math.random()*10));
cnt.val = tmp + 1;
Thread.sleep((int)Math.round(Math.random()*20));

}
}
catch (InterruptedException e) {}

Engineering 8893: Java Threads January 19, 2004

6

}
}

Engineering 8893: Java Threads January 19, 2004

7

class Counter
{

public int val = 0;
}

Engineering 8893: Java Threads January 19, 2004


