
Behaviour Specification

Behaviour Specification

A reactive system is a system that must react to external events:

• A Calculator must react to the keypresses.

• A Microwave oven must react to keypresses and also to the
passage of time.

• An internet Router must react to the arrival of packets.

• A synchronous hardware circuit must react to the clock ticks.

Most systems can be viewed as reactive.
We can specify and/or model a reactive system using state
machines.



Behaviour Specification

StateCharts

StateCharts is a diagrammatic language for modelling finite state
systems.
There are various flavours of State-
Charts.
We’ll use UML StateCharts.

• trigger — the event that causes a
transition.

• guard — a condition that must be
true for the transition to occur.

• reaction — event or change of
system variables at the instant of
the transition.

• Time passes in states.

• Transitions are instantaneous.



Behaviour Specification

Statecharts (cont’d)

• All of trigger, guard and reaction are optional.
• If trigger is omitted then transition occurs as soon as guard is

true.
• If guard is omitted then guard is true.
• If reaction is omitted then there is no reaction, just state

change.

• Triggers may be parameterized.
• Conditions can be used to

• Inhibit transitions — if condition is false then transition can’t
occur.

• Select between alternatives — universal & mutually exclusive
guards (e.g., [x < SetPoint], [x ≥ SetPoint]).

• Hierarchies of states can be formed:
• non-orthogonal (“or”) states — whenever the super-state is

active then exactly one of the sub-states is active.
• orthogonal (“and”) states — concurrent state machines.

Whenever the super-state is active one of the states in each of
the sub-state(machines) is active.



Behaviour Specification

Example: Rice Cooker



Behaviour Specification

Activities

States can be annotated with activities
• entry activities occur on entry to

the state.

• do activities happen continuously
when the state is active.

• exit actvitites occur on exit from
the state.



Behaviour Specification

State Types

Simple state State with no substructure

Initial state A pseudostate that indicates the starting state when

the enclosing state becomes active.

Final state A special state whose activation indicates the

enclosing state has completed activity.

0From [1].



Behaviour Specification

State Types (cont’d): Non-orthogonal state

Composite state that contains one or more direct sub-states,
exactly one of which is active at one time when the composite
state is active.



Behaviour Specification

State Types (cont’d): Orthogonal state

Divided into two or more regions. One direct substate from each
region is concurrently active when the composite state is active.



Behaviour Specification

State Types (cont’d): Orthogonal state

Terminate A special state whose activation terminates execution

of the object owning the state machine.

Junction A pseudostate that chains transition segments into a

single run-to-completion transition.

Choice A pseudostate that perfoms a dynamic branch within

a single run-to-completion transition.

History state A pseudostate whose activation restores the
previously active state within a composite state.



Behaviour Specification

State types (cont’d)

Submachine state State that references a state machine definition,
which conceptually replaces the submachine state.

Entry point An externally visible pseudostate within a state
machine that identifies an internal state as a target.

Exit point An externally visible pseudostate within a state
machine that identifies an internal state as a source.



Behaviour Specification

Transitions

External Changes active state.

Entry Specifies an activity that occurs when a state
becomes active.

Exit Specifies an activity that occurs when a state is
exited.

Internal Causes execution of an effect but does not cause a
change of state or execution of exit or entry
activities. (Note: this is different from a self
transition, which does invoke exit/entry activities.)



Behaviour Specification

References

[1] James Rumbaugh, Ivar Jacobson, and Grady Booch.
The Unified Modeling Language Reference Manual.
Addison-Wesley, second edition, 2005.


	Behaviour Specification

