Overview

Verification

Any activity that is undertaken to determine if the system meets
its objectives or not.

e Every product should be verified (e.g., code, design
documentation, user documentation).

e Every quality should be verified (e.g., behaviour, modifiability,
robustness, usability).

e Some qualities or products will not yield yes/no verification
results
e Impossible/difficult to measure (e.g., correctness)
e Subjective (e.g., modifiability)

e Implicit qualities should be verified.

Overview
Approaches to verification

@ Testing

@® Static Analysis (e.g., of design).
© Symbolic execution

O Model checking

Testing

Testing

Execute the system and observe the behaviour to determine if it is
acceptable.

“Testing can be a very effective way to show the presence
of bugs, but it is hopelessly inadequate for showing their
absence.” (E. W. Dijkstra)

The goal of testing is to find bugs.

@ What test cases (input values) will be used?
® How many test will be run?

©® How will we do the testing (testing structure)?
O How do we know if the behaviour is correct?

Testing

Test case selection 1: Black-Box Testing

e Based on externally observable behaviour of a component.
e No reference to implementation.

e Normally divide input domain (possible inputs) into
equivalence classes — sets of inputs for which the future
behaviour is the same.

e Choose some test cases from each (or as many as possible) of
the equivalence classes.

e Try to choose some where errors are likely (e.g., boundaries of
the equivalence classes).

e Assumes that the implementation chooses the same classes.

e Number of classes may be very large.

Testing

Test case selection 2: Clear-Box Testing

Based on examination of code.

Choose test cases so that all parts of the code are tested.
e Lines
e Conditions
e Paths

Danger of the tester missing the same cases as the
implementer.

e Line coverage is very hard.

Path coverage is practically impossible.

Testing

Test case selection 3: Random Testing

e Randomly choose test cases according to some probability
density function (usage profile).

e Typically requires more test cases to find faults.
e May find cases that were overlooked.

e Can be used to estimate reliability (likelihood of fault
occurring in practice).

e Validity of reliability is very dependent on the validity of the
usage profile.

Testing

How many Tests?

Exhaustive testing — Try every possible input.

Until you're confident that all bugs have been found.
Until you stop finding bugs.
o Track rate of fault detection (faults / hour of testing).
e Set a threshold for acceptable rate.

e As many as you have time for.

Testing

How good is Random Testing?

Consider this simple (wrong) program to compare equal length
strings:

bool stringcmp(string sl1, string s2)
{
bool eq = true;
unsigned i = 0;
while (i < sl.length()) {
eq = (s1[i] == s2[il);
i++;
}
return(eq) ;

3

What's the probability of finding this error by testing?

Testing

Probability of finding bug

= Pr(two unequal test strings have the same last character)
= 1 - Pr(strings differ in their last character)”

where n is the number of test cases.

Assume random strings from an alphabet of 100 characters.

=1- %”
| n | Pr(detecting error) |
1 0.010
5 0.049
10 0.096
So how many test cases to be 99% sure of detecting the error?
0.99 >1— 2"

100
0.99" < 0.01 = n > 459

Testing

Testing Structure 1: Unit Testing

e Test each ‘unit’ (class/module/package) independently.
e If the parts all work then the whole should work.

Bottom-up Test the units at the bottom of the uses hierarchy
first.

e Requires driver functions to call the units.
e Tested units can be used when testing higher
level units.

Top-down Test the units at the top of the uses hierarchy first.

e Requires stub functions.

Testing

Testing Structure 2: Integration Testing

e Test the interaction between components.
e May require driver or stubs on either side.

e Will help find places were developers didn't have the same
understanding of the design. (Fix the documents, they're
probably ambiguous.)

Testing

Testing Structure 3: System Testing

Test overall system behaviour.

Very hard to isolate bugs.

Can only be done late in the process, so cost of fixes is high.

Typically used for acceptance testing (customer, regulatory
body).

Testing

Checking Correct Behaviour: Oracles

An oracle is a means of determining if the observed behaviour is
correct or not.

e Most common form: human observation.
e Time consuming
e Expensive
e Error prone
e Automated oracles — use a program to check.
e Fast, cheap, accurate.
e Must be coded somehow (can be generated from spec. if spec.
is written formally).
e Could itself have errors.
o Partial oracles — don't check all required properties.

e Check those that are easiest to check.
o Check those that are likely to be source of faults.

Static Analysis

Static Analysis

Peer review — ask a colleague to look it over.

Inspection/Walk-through /Structured Review — structured
meeting to review each product.

Reader: leads the review, paraphrases each section
Recorder: makes detailed notes

Inspectors: look for problems

Preparation is essential

Just find problems, don’t fix them

Emperically shown to be more efficient than testing
Will find problems that won't be found in testing (e.g.,
documentation, confusing code, unusual error cases).

Static Analysis

Static Analysis (cont'd)

Formal verification — prove that design/implementation satisfies
its specification.

Requires formal specification.

Requires high level of mathematical precision.

e Only practicable if automated proof checking tools are

used.

Very high effort for any non-trivial system.

Symbolic Execution

Symbolic Execution

Trace through program using symbolic expressions (i.e.,
algebraic manipulation) for all variables.

Represent symbolic execution as symbolic state triple:
(variable symbolic values, path, path condition)
For each step in the program, update the symbolic state

e Read/input creates new symbol
e Assignment creates symbolic value expression
e Conditions add constraints to path condition.

Must consider all possbile paths.

Model Checking

Model Checking

Construct (usually automatically) a (finite state) model of the
design, use tools to check properties, for example:

e non-reachability of error/failure states

absence of deadlock

reachability of desired states (liveness)
e properties on sequences of states, e.g.,

o forall next states/exists next state satisfying P
e In every/a sequence from S, P; holds until P, holds
e In every/a sequence from S, P; will eventually hold

Model Checking

Verification Artifacts

e Verification plan — what will you do to verify the system?
e Outline of test cases. (e.g., “0 < spin < 45")
e Structure of testing.
e Outline of harnesses/stubs required (consider JUnit).
e Verification report
e Actual test cases. (e.g., “spin = 37")
e pass / fail for each test.
e Test Harness/stubs

	Overview
	Testing
	Static Analysis
	Symbolic Execution
	Model Checking

