
Overview Testing Static Analysis Symbolic Execution Model Checking

Verification

Any activity that is undertaken to determine if the system meets
its objectives or not.

• Every product should be verified (e.g., code, design
documentation, user documentation).

• Every quality should be verified (e.g., behaviour, modifiability,
robustness, usability).

• Some qualities or products will not yield yes/no verification
results

• Impossible/difficult to measure (e.g., correctness)
• Subjective (e.g., modifiability)

• Implicit qualities should be verified.



Overview Testing Static Analysis Symbolic Execution Model Checking

Approaches to verification

1 Testing

2 Static Analysis (e.g., of design).

3 Symbolic execution

4 Model checking



Overview Testing Static Analysis Symbolic Execution Model Checking

Testing

Execute the system and observe the behaviour to determine if it is
acceptable.

“Testing can be a very effective way to show the presence
of bugs, but it is hopelessly inadequate for showing their
absence.” (E. W. Dijkstra)

The goal of testing is to find bugs.

1 What test cases (input values) will be used?

2 How many test will be run?

3 How will we do the testing (testing structure)?

4 How do we know if the behaviour is correct?



Overview Testing Static Analysis Symbolic Execution Model Checking

Test case selection 1: Black-Box Testing

• Based on externally observable behaviour of a component.

• No reference to implementation.

• Normally divide input domain (possible inputs) into
equivalence classes — sets of inputs for which the future
behaviour is the same.

• Choose some test cases from each (or as many as possible) of
the equivalence classes.

• Try to choose some where errors are likely (e.g., boundaries of
the equivalence classes).

• Assumes that the implementation chooses the same classes.

• Number of classes may be very large.



Overview Testing Static Analysis Symbolic Execution Model Checking

Test case selection 2: Clear-Box Testing

• Based on examination of code.

• Choose test cases so that all parts of the code are tested.
• Lines
• Conditions
• Paths

• Danger of the tester missing the same cases as the
implementer.

• Line coverage is very hard.

• Path coverage is practically impossible.



Overview Testing Static Analysis Symbolic Execution Model Checking

Test case selection 3: Random Testing

• Randomly choose test cases according to some probability
density function (usage profile).

• Typically requires more test cases to find faults.

• May find cases that were overlooked.

• Can be used to estimate reliability (likelihood of fault
occurring in practice).

• Validity of reliability is very dependent on the validity of the
usage profile.



Overview Testing Static Analysis Symbolic Execution Model Checking

How many Tests?

• Exhaustive testing — Try every possible input.

• Until you’re confident that all bugs have been found.

• Until you stop finding bugs.
• Track rate of fault detection (faults / hour of testing).
• Set a threshold for acceptable rate.

• As many as you have time for.



Overview Testing Static Analysis Symbolic Execution Model Checking

How good is Random Testing?

Consider this simple (wrong) program to compare equal length
strings:

bool stringcmp(string s1, string s2)
{
bool eq = true;
unsigned i = 0;
while (i < s1.length()) {
eq = (s1[i] == s2[i]);
i++;

}
return(eq);

}

What’s the probability of finding this error by testing?



Overview Testing Static Analysis Symbolic Execution Model Checking

Probability of finding bug

= Pr(two unequal test strings have the same last character)
= 1 - Pr(strings differ in their last character)n

where n is the number of test cases.
Assume random strings from an alphabet of 100 characters.
= 1− 99

100

n

n Pr(detecting error)

1 0.010

5 0.049

10 0.096
So how many test cases to be 99% sure of detecting the error?
0.99 ≥ 1− 99

100

n

0.99n ≤ 0.01 ⇒ n ≥ 459



Overview Testing Static Analysis Symbolic Execution Model Checking

Testing Structure 1: Unit Testing

• Test each ‘unit’ (class/module/package) independently.

• If the parts all work then the whole should work.

Bottom-up Test the units at the bottom of the uses hierarchy
first.

• Requires driver functions to call the units.
• Tested units can be used when testing higher

level units.

Top-down Test the units at the top of the uses hierarchy first.

• Requires stub functions.



Overview Testing Static Analysis Symbolic Execution Model Checking

Testing Structure 2: Integration Testing

• Test the interaction between components.

• May require driver or stubs on either side.

• Will help find places were developers didn’t have the same
understanding of the design. (Fix the documents, they’re
probably ambiguous.)



Overview Testing Static Analysis Symbolic Execution Model Checking

Testing Structure 3: System Testing

• Test overall system behaviour.

• Very hard to isolate bugs.

• Can only be done late in the process, so cost of fixes is high.

• Typically used for acceptance testing (customer, regulatory
body).



Overview Testing Static Analysis Symbolic Execution Model Checking

Checking Correct Behaviour: Oracles

An oracle is a means of determining if the observed behaviour is
correct or not.

• Most common form: human observation.
• Time consuming
• Expensive
• Error prone

• Automated oracles — use a program to check.
• Fast, cheap, accurate.
• Must be coded somehow (can be generated from spec. if spec.

is written formally).
• Could itself have errors.

• Partial oracles — don’t check all required properties.
• Check those that are easiest to check.
• Check those that are likely to be source of faults.



Overview Testing Static Analysis Symbolic Execution Model Checking

Static Analysis

Peer review — ask a colleague to look it over.

Inspection/Walk-through/Structured Review — structured
meeting to review each product.

• Reader: leads the review, paraphrases each section
• Recorder: makes detailed notes
• Inspectors: look for problems
• Preparation is essential
• Just find problems, don’t fix them
• Emperically shown to be more efficient than testing
• Will find problems that won’t be found in testing (e.g.,

documentation, confusing code, unusual error cases).



Overview Testing Static Analysis Symbolic Execution Model Checking

Static Analysis (cont’d)

Formal verification — prove that design/implementation satisfies
its specification.

• Requires formal specification.
• Requires high level of mathematical precision.
• Only practicable if automated proof checking tools are

used.
• Very high effort for any non-trivial system.



Overview Testing Static Analysis Symbolic Execution Model Checking

Symbolic Execution

• Trace through program using symbolic expressions (i.e.,
algebraic manipulation) for all variables.

• Represent symbolic execution as symbolic state triple:
(variable symbolic values, path, path condition)

• For each step in the program, update the symbolic state
• Read/input creates new symbol
• Assignment creates symbolic value expression
• Conditions add constraints to path condition.

• Must consider all possbile paths.



Overview Testing Static Analysis Symbolic Execution Model Checking

Model Checking

Construct (usually automatically) a (finite state) model of the
design, use tools to check properties, for example:

• non-reachability of error/failure states

• absence of deadlock

• reachability of desired states (liveness)

• properties on sequences of states, e.g.,
• forall next states/exists next state satisfying P
• In every/a sequence from S , P1 holds until P2 holds
• In every/a sequence from S , P1 will eventually hold



Overview Testing Static Analysis Symbolic Execution Model Checking

Verification Artifacts

• Verification plan — what will you do to verify the system?
• Outline of test cases. (e.g., “0 < spin < 45”)
• Structure of testing.
• Outline of harnesses/stubs required (consider JUnit).

• Verification report
• Actual test cases. (e.g., “spin = 37”)
• pass / fail for each test.
• Test Harness/stubs


	Overview
	Testing
	Static Analysis
	Symbolic Execution
	Model Checking

