
Hyper-Real-Time Ice Simulation and Modeling
Using GPGPU

Shadi Alawneh, Roelof Dragt, Dennis Peters, Senior Member, IEEE, Claude Daley, and Stephen Bruneau

Abstract—This paper describes the design of an efficient parallel implementation of an ice simulator that simulates the behaviour of a

ship operating in pack ice. The main idea of the method is to treat ice as a set of discrete objects with very simple properties, and to

model the system mechanics mainly as a set of discrete contact and failure events. In this way it becomes possible to parallelize the

problem, so that a very large number of ice floes can be modeled. This approach is called the Ice Event Mechanics Modeling (IEMM)

method which builds a system solution from a large set of discrete events occurring between a large set of discrete objects. The

simulator is developed using the NVIDIA Compute Unified Device Architecture (CUDA). This paper also describes the execution of

experiments to evaluate the performance of the simulator and to validate the numerical modeling of ship operations in pack ice. Our

results show speed up of 11 times, reducing simulation time for a large ice field (9,801 floes) from over 2 hours to about 12 minutes.

Index Terms—GPGPU, CUDA, ice simulation, ice—ship interaction, experimental validation

Ç

1 INTRODUCTION

THE Sustainable Technology for Polar Ships and Struc-
tures project (referred to as STePS2)1 supports sustain-

able development of polar regions by developing direct
design tools for polar ships and offshore structures.
Direct design improves on traditional design methods by
calculating loads and responses against defined perfor-
mance criteria. The deliverables of the project include a
numerical model which accurately handles collision sce-
narios between ice and steel structures. The research
described in this paper is to use General Purpose GPU
computing, or GPGPU, to implement some of the numeri-
cal models in this project.

Sea ice is a complex natural material that can destroy
ships and offshore structures. The idea described here
allows the practical and rapid determination of ship-ice,
ice-ice and ice-structure interaction forces and effects in a
sophisticated ice regime. The term rapid is meant to mean
at least real-time with the aim to be hyper-real-time. The
term practical implies that the method can be developed
using software and hardware that is reasonably afford-
able by typical computer users. The method is designed
to take advantage of massively parallel computations that
are possible using graphical processing unit (GPU) hard-
ware. The main idea of the method is to treat ice as a set
of discrete objects with very simple properties, and to
model the system mechanics mainly as a set of discrete

contact and failure events. In this way it becomes possible
to parallelize the problem, so that a very large number of
ice floes can be modeled. This approach is called the Ice
Event Mechanics Modeling (IEMM) methods, which
builds a system solution from a large set of discrete
events occurring between a large set of discrete objects.
The discrete events among the discrete objects are
described with simple event equations (event solutions).
Unlike existing methods such as finite element [1] discrete
element [2] and Particle in Cell [3] methods are built on
the ideas of continuum mechanics. The IEMM approach
is based on the premise that aggregate behavior is only
weakly dependent on the continuum processes inside ice
events, but very strongly dependent on the sequence of
events. Each discrete collision and failure (fracture) that
occurs creates the initial conditions for the subsequent
event. The collisions and fractures occur so fast (relative
to the time between events) that they can be considered
to be instant, which is to say that they are events rather
than processes.

With the relatively recent development of GPUs it has
become possible to employ massively parallel computation
on the level of a desktop computer. Massively parallel com-
putation coupled with discrete event solutions for ice-ice
and ice-structure interactions are combined to create a
method to permit the rapid practical simulation of realistic
ice behavior. The approach permits the development of use-
ful solutions to a number of practical problems that have
been plaguing the designers of arctic offshore constructions
(ships and structures) for many years. The problem compo-
nents are as follows:

1) Discreteness and fidelity. Almost any photograph of a
ship or a structure in ice, or a photo of the ice itself
will indicate the ice is not smooth. The ice is actually
a very large number of discrete, nearly rigid objects,
all interacting with each other and any structure that
we place in the sea. Standard approaches used to

1. http://www.engr.mun.ca/steps2/index.php

� S. Alawneh, D. Peters, C. Daley, and S. Bruneau are with the Faculty of
Engineering, Memorial University of Newfoundland, St. John’s, NF A1B
3X5. E-mail: {shadi.alawneh, dpeters, cdaley, sbruneau}@mun.ca.

� R. Dragt is with the Department of Offshore Engineering, Delft University
of Technology, Delft, Netherlands. E-mail: sanderdragt@gmail.com.

Manuscript received 12 Nov. 2013; revised 6 Feb. 2015; accepted 19 Feb. 2015.
Date of publication 8 Mar. 2015; date of current version 11 Nov. 2015.
Recommended for acceptance by C. Heitmeyer.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2409861

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015 3475

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

model this situation fail to capture in any realistic
way the discreteness of the situation. Either the mod-
els focus all their attention in single events (single
collisions) or they treat multiple events by smooth-
ing the problem into some form of continuum. This
leads to a general lack of confidence in models, and
an over reliance on the scarce, expensive and inade-
quate full scale data. There is a great need for models
that can support engineering design and assessment
of arctic structures, models that will have features
that are obviously and demonstrably comparable to
the discrete features that are apparent in real sea ice.

2) Training. To allow for improved training of vessel
operators in realistic ice conditions, we must have
ship ice interaction calculations performed and dis-
played in real time. This is a significant challenge,
due to the complexity of ice and the nature of the
mechanics of solids. With most vehicles (cars, planes,
ships in water), the vehicle is passing through or
over a relatively smooth continuum. The environ-
ment is not altered by the vehicle. In the case of ice,
the vessel must break the ice, and the ice will remain
broken. (Planes do not break the air, cars do not
break the road). Modeling ice loads using standard
approaches (finite element modeling etc) takes so
long that real-time simulation is not feasible. The
IEMM approach will enable a high degree of realism
in training situations.

3) Long range planning and design. Arctic resource devel-
opments will require many novel ships and struc-
tures. In the past it would have been normal practice
to learn from novel designs through a system of trial
and error (success and failure). Increasingly there is
a need to lower risks and plan against failure in
advance. As such there is a need to conduct the trial
and error exercises through long term high fidelity
simulations, to the greatest practical extent. The
IEMM concept is aimed at this challenge. By
enabling hyper-real-time simulation with high phys-
ical fidelity, it will be possible to conduct design-life-
length simulations, with treatment of evolving ice
conditions, realistic operations and natural variabil-
ity. The concept will enable designers, regulators
and stakeholders in offshore projects to gain a much
greater level of confidence in the safety of the proj-
ects and the key issues that must be addressed.

This paper presents an efficient parallel implementation
of such a simulator developed using the NVIDIA Compute
Unified Device Architecture (CUDA). This paper also
presents the results of the experiments to evaluate the perfor-
mance of the algorithms developed in this work and to vali-
date the numerical models of ship operations in pack ice.

1.1 Ice Floe Simulation

The particular problem that we are investigating is to simu-
late the behaviour of floating ice floes (pack ice, see Fig. 1)
as they move under the influence of currents and wind and
interact with land, ships and other structures, while possi-
bly breaking up in the process. In a two-dimensional model,
we model the floes as convex polygons and perform a dis-
crete time simulation of the behaviour of these objects. The
goal of this work is to be able to simulate behaviour of ice
fields sufficiently quickly to allow the results to be used for
planning ice management activities, and as such it is neces-
sary to achieve a simulation many times faster than real-
time simulation.

This project is structured in two components, the Ice Sim-
ulation Engine, which is the focus of this paper, and the Ice
Simulation Viewer, which is being developed to display the
data produced by the simulation engine. The simulation
viewer displays frames of ice field data sequentially to pro-
vide its user with a video of a simulation of the field. It is
currently used by the STePS2 software team to help deter-
mine the validity of the data calculated by the simulation
and will eventually be used to present results to project
partners. The Ice Simulation Viewer is being developed in
C++ using the Qt [5] user interface framework. Fig. 2 shows
a screenshot of the main interface of the Ice Simulation
Viewer with an ice field loaded. For more details about the
Ice Simulation Viewer see [6].

This paper handles the 2D simulation of pack ice and
consider driving forces (e.g., current, wind) and models
some 3D aspects but didn’t consider motion in 3D. The goal
is to achieve a simulation that is fast enough to be practi-
cally used for planning ice management activities in realistic
size ice fields. The 3D version of the simulation will be left
for future work.

1.2 Novel Contributions

Through our literature review we were not able to find any
other published work in which GPGPU is used to achieve
hyper-real-time simulations of ice. Therefore, this paper

Fig. 1. Ice floes [4].

Fig. 2. Ice simulation viewer.

3476 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

introduces a new GPGPU approach that can be used to sim-
ulate the behaviour of a ship in pack ice. Using the new
GPGPU approach, hyper-real-time simulations can be
achieved which will allow the results to be used in planning
ice management activities. This feature has great practical
significance for design, assessment and training applica-
tions. This approach will be described in detail in Section 5.

1.3 Paper Outline

The remainder of this paper is organized as follows.
Section 2 presents the related work. Section 3 describes the
mechanics of the GPGPU model. Section 4 describes a brief
overview of CUDA and it also describes the collision detec-
tion algorithm and a high level algorithm of the simulator.
Section 5 describes the experiments to evaluate the perfor-
mance of algorithms and it also discusses the different
approaches for implementing the ice simulator. Section 6
describes the physical model experiments to validate the
GPGPU model. Sections 7 and 8 concludes with the ongoing
research and future plans.

2 RELATED WORK

The work reported in this paper is an extension of the recent
work of [7], [8]. The experiments in the current work shows
the performance for a larger ice fields. The current work
introduces a new approach to generate the list of neighbors
for each ice floe, which results in better performance. This
approach uses a variable radius specific to each floe pair.
The current work also discusses the performance of alterna-
tive collision detection approach (uniform grid) and
describes the execution of the experiments to validate the
numerical modeling of ship operations in pack ice. The vali-
dation experiments has been described in a non-refereed
local workshop [9].

A complete details about the Ice Simulation Viewer,
which is being developed to display the data produced by
the simulation engine, has been described in a non-refereed
local workshop [6].

The event-mechanics approach to assess vessel perfor-
mance in pack ice has been introduced in [10], [11]. In [10], a
set of simulation domains, each containing hundreds of dis-
crete and interacting ice floes is modeled. A simple vessel is
modeled as it navigates through the domains. Each ship-ice
collision is modeled, as is every ice-ice contact. Time histo-
ries of resistance, speed and position are presented along
with the parametric sensitivities. The results are compared
to published data from analytical, numerical and scale
model tests. In [11], the use of a GPU-Event-Mechanics
(GEM) simulation to assess local ice loads on a vessel oper-
ating in pack ice has been explored.

The interaction between a ship and ice is a complex pro-
cess. The most important factors that this process depends
on are: the ice conditions, the hull geometry and the relative
velocity between the ship and the ice. The main idea of ice
breaking was explained by Enkvist et al. [12]. Kotras et al.
[13] and Valanto [14] described an overview of ship-level
ice interaction where they divided the interaction process
into several phases: breaking, rotating, sliding and clearing.
This work focuses on the 2D clearing in open pack ice and
the breaking.

A good understanding of the processes of ship-ice inter-
action is essential for developing reliable theoretical models.
These models help optimize the design and operation of
ships in Arctic waters. Several performance models exist,
including semi-analytical and purely empirical variants,
e.g. [15], [16], [17]. These models can be used in the early
design stage for an icebreaker to choose a hull form and a
propulsion system that give the best possible performance
in terms of global resistance, available thrust, maximum
speed and fuel consumption. As well as they can be used to
help ship crew optimize their route.

Lubbad and Løset [18] described a numerical model to
simulate the process of ship-ice interaction in real-time.
PhysX, a real-time physics engine middleware SDK, is used
to solve the equations of rigid body motions for all ice floes
in the calculation domain. They have validated their results
of the simulator against experimental data frommodel-scale
and full-scale tests. The validation tests showed a adequate
agreement between the model calculations and experimen-
tal measurements. The goal of our work is to be able to sim-
ulate behaviour of ice fields sufficiently quickly by using
GPGPU to allow the results to be used for planning ice man-
agement activities, and so it is necessary to achieve many
times faster than real-time simulation. The results of that
work suggest that the level of hyper-real-time performance
that we hope to achieve will not result from PhysX, so it is
not used in this project.

There are several researchers who have developed parti-
cle system simulation on GPUs. Kipfer et al. [19] described
an approach for simulating particle systems on the GPU
including inter-particle collisions by using the GPU to
quickly re-order the particles to determine potential collid-
ing pairs. Kolb et al. [20] described a GPU particle system
simulator that provides a support for accurate collisions of
particles with scene geometry by using GPU depth compari-
sons to detect penetration. A simple GPU particle system
example is provided in the NVIDIA SDK [21]. They
described how to implement a particle system in CUDA,
including particle collisions using a uniform grid data struc-
ture which will be described in Section 5.3.1. In this work,
we have tried to use the uniform grid data structure to han-
dle collisions but we didn’t get better performance than the
current approach that we are using.

3 ICE BEHAVIOUR

Each ice-ice collision event within the pack is treated using
a method that can be traced to Popov et al. [22]. The
method was updated to reflect pressure-area effects [23],
and used for a variety of ship-ice interaction scenarios
[24]. When two bodies collide in a 2D world, each body
has 3 degrees of freedom, as well as two mass parameters,
and a shape (see Fig. 3). The large number of parameters

Fig. 3. Idealization of 2D collision between two finite bodies [11].

ALAWNEH ET AL.: HYPER-REAL-TIME ICE SIMULATION AND MODELING USING GPGPU 3477

makes the collision problem potentially very difficult. The
problem can be substantially simplified by making a few
simplifying assumptions and viewing the problem from
the perspective of the collision point. It is assumed that the
collision will be of short duration, and that the force will
act, in the frictionless case, normal to the line of contact
(see Fig. 4). With these assumptions the problem can be
reduced to an equivalent one dimensional collision. The
equivalent velocity is the closing velocity at the point of
contact along the collision normal.

The mass reduction factor ðRÞ for one body subject to a
collision along a normal is:

R ¼ l2 þm2 þ h2

r2x
; (1)

where l and m are direction cosines of the inward normal
vector, h is the moment arm of the normal vector about the

centroid and r2x is the square of the radius of gyration of the
body (see Fig. 3). Each body in a two body collision has a
unique mass reduction factor. The above mass reduction
factor represents the simplest case for 2D without added
mass or friction. Enhancements to the formula have been
developed to include effects of hydrodynamic added mass
and friction and 3D effects (see [23]).

The program assumes that all collisions are inelastic,
where the ice crushing energy absorbs all the effective
kinetic energy. A collision is detected in one time step when
the two bodies are found to overlap. The effective masses
and normal velocities are determined for each colliding
body for their respective points of impact. The direction of
relative motion is determined to allow the determination of
the friction direction. The impulse that will eliminate the
net normal velocity is then found. That impulse is applied
to each body in an equal and opposite sense. The result is
that the normal velocity at that point is zero in the next time
step. This does not mean that all motion is stopped. Ice floes
tend to rotate around the collision point and slide away.
This approach does contain some idealizations and approxi-
mations, but does appear to be stable and produce reason-
able results.

The forces are found by using the “process pressure-
area” relationship for ice, the ice edge shape, hull angles,
and effective mass of each collision (see [23]). It should be
noted that two distinct versions of this approach are used in
the Ice-Event-Mechanics simulation. The kinematics of the
vessel and ice are modeled in 2D, so one implementation of

the model derives the 2D forces. Those algorithms assume
that the vessel is wall sided, and do not permit ice to move
under the hull. Another algorithm takes the hull form into
account and determines impact forces using the 3Dmechan-
ics and shapes. These 3D forces are logged for later analysis.
For the above reasons, the simulation presented is termed a
2.5D simulation. It is for this reason that the simulations are
limited to open pack. High ice concentrations and pressure
in the ice pack would create conditions that would invali-
date the assumptions. Future model development is
planned to remove these restrictions.

4 METHODOLOGY

4.1 CUDA Overview

CUDA is a comprehensive software and hardware architec-
ture for GPGPU that was developed and released by Nvidia
in 2007. This development forwarded Nvidia’s move
toward GPGPU and High-Performance Computing (HPC),
combining huge programmability, performance, and ease
of use. A major design goal of CUDA is to support heteroge-
neous computations in a sense that serial parts of an appli-
cation are executed on the CPU and parallel parts on the
GPU [25].

Based on [26], the CUDA programming model provides
a helpful way to solve the problems by splitting it into two
steps: First dividing the problem into coarse independent
sub-problems (grids) and then into finer sub-tasks that can
be executed cooperatively (thread blocks). The programmer
writes a serial C for CUDA program which invokes parallel
kernels (functions written in C). The kernel is usually exe-
cuted as a grid of thread blocks. In each block the threads
work together through barrier synchronization, and they
have access to a shared memory that is only visible to the
block. Each thread in a block has a different thread ID. Each
grid consists of independent blocks. Each block in a grid has
a different block ID. Grids can be executed either indepen-
dently or dependently. Independent grids can be executed
in parallel provided that we have a hardware that supports
executing concurrent grids. Dependent grids can only be
executed sequentially. There is an implicit barrier that
ensures that all blocks of a previous grid have finished
before any block of the new grid is started.

4.2 Collision Detection

Since this work uses a discrete time simulation, for each
time step the collisions are detected by searching for regions
of overlap between ice floes, compute the momentum that
would result from such a collision and adjust the velocity of
each floe accordingly. The problem of detecting collisions
between ice floes is broken down into two parts: determin-
ing if the floes are overlapping, and computing the region
of overlap.

To determine whether or not two convex polygons are
intersecting we have used the method of separating axes
[27]. This method determines whether or not two convex
objects are intersecting. This method is a fast generic algo-
rithm that can remove the need to have collision detection
code for each type pair (any type of convex polygons: three-
sided, four-sided, five-sided, etc...) thereby reducing code
and maintenance.

Fig. 4. Assumption concerning the location and direction of impact
forces [11].

3478 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

In this method the test for nonintersection of two convex
objects is simply stated: If there exists a line for which the
intervals of projection (the lowest and highest values of the
polygon projection on the line) of the two objects onto that
line do not intersect, then the objects do not intersect. Such a
line is called a separating line or, more commonly, a sepa-
rating axis.

For a pair of convex polygons in 2D, only a finite set of
direction vectors needs to be considered for separation tests:
the normal vectors to the edges of the polygons. The left pic-
ture in Fig. 5 shows two nonintersecting polygons that are
separated along a direction determined by the normal to an
edge of one polygon. The right picture shows two polygons
that intersect (there are no separating directions).

Once it is determined that two polygons are overlapping,
the region of overlap is identified to compute the resultant
momentum. Finding the intersection of two arbitrary poly-
gons of n and m vertices can have quadratic complexity,
VðnmÞ. But the intersection of two convex polygons has
only linear complexity, OðnþmÞ. Intersection of convex
polygons is a key component of a number of algorithms,
including determining whether two sets of points are sepa-
rable by a line. The first linear algorithm was found by
Shamos [28], and since then a variety of different algorithms
have been developed, all achieving OðnþmÞ time complex-
ity. This work uses the algorithm that was developed by
O’Rourke, Chien, Olson & Naddor [29].

The basic idea of the algorithm is as illustrated in
Algorithm 1 [29]. Here, the boundaries of the two polygons
P and Q are oriented counterclockwise, and let A and B be
directed edges on each. The algorithm has A and B chasing
one another. The edges A and B are shown as vectors.

Algorithm 1. Intersection of Convex Polygons

" Assume that P and Q overlap
Choose A and B arbitrarily.
repeat
if A intersects B then
The point of intersection is a vertex.
One endpoint of each of A and B is a vertex.

end if
Advance eitherA orB, depending on geometric conditions.

until both A and B cycle their polygons
if no intersections were found then
One polygon must be entirely within the other.

end if

4.3 High Level Algorithm of the Simulator

Fig. 6 shows the high-level flow of the ice simulator. At the
beginning the CPU reads the ice floe data (position and

velocity) and initializes the simulation parameters. The ini-
tial data is transferred from the CPU to the GPU. Then, the
GPU takes over the main work of the simulation. First, the
“create neighbours list” kernel is launched to find the list of
polygons that might overlap with each ice floe. Then, the
“test intersection and find collision response” kernel is
launched to determine the list of ice floes that have overlap
with each ice floe and to calculate the collision response for
each ice floe. Last, the “update” kernel is launched to
update the position and velocity for all ice floes. After that,
the ice floe data is transferred back to the CPU. This process
is repeated until the simulation is completed.

5 ALGORITHMS DEVELOPMENT

This section describes the experiments to evaluate the per-
formance of algorithms. It also discusses the different
approaches for implementing the ice simulator.

In this work, Intel(R) Xeon(R) CPU E5520 @2.27 GHz and
a GPU Tesla C2050 card have been used. This card has
448 processor cores, 1.15 GHz processor core clock and
144 GB/sec memory bandwidth.

5.1 Ice Simulator Implementation

As the implementation have been developed. Three differ-
ent general structures of the GPU solution have been pro-
gressed through. They are explained below and the relative
performance of these is illustrated in Fig. 7.

In the first implementation, two CUDA kernels were
used: The first kernel, executed using one thread per poly-
gon, finds the list of all pair-wise collisions by determining
which pairs of polygons (ice floes) are overlapping. The
second kernel, executed using one thread per overlapping
polygon pair, computes the collision response (momen-
tum) for each pair. This approach resulted in speed-up of
up to 10 times as compared with the CPU implementation,
and didn’t achieve real-time results in all cases and there-
fore is insufficient.

In the second implementation the two kernels were
merged in one kernel. One thread for each polygon to check
the collision with other polygons and calculate the response.

Fig. 5. Nonintersecting convex polygons (left). Intersecting convex poly-
gons (right) [27].

Fig. 6. Ice simulator flowchart.

ALAWNEH ET AL.: HYPER-REAL-TIME ICE SIMULATION AND MODELING USING GPGPU 3479

This approach was slightly faster than the first, but still
insufficient for the general case.

In the third implementation we took advantage of the
fact that polygons that are widely separated are unlikely to
overlap any time soon, and so we could dramatically
reduced the number of polygons to be checked for collision
by eliminating those that are beyond some distance away.
To do this we added another kernel that finds the list of
neighbours for each polygon that are within the region
where they might overlap with it soon. Therefore, instead of
checking the collisions with every other object we just
checked with those in the list of neighbours. The list is re-
created periodically, but not at every time step, so that the
total number of computations is significantly reduced. This
approach is significantly faster than the other two
approaches as we see in Fig. 7 and achieves substantially
better than real-time simulation for small ice fields.

5.2 Performance Evaluation

We have implemented a serial and parallel version of the
simulator and tested both versions on a large ice fields
and at different (real-time) durations. The ice field has
9,801 ice floes. The simulation time step ðDtÞ that we have
used in the simulations is 0.1 s. We have used 0.1 s to
maintain accuracy in the ice mechanics. We have tried
two different approaches to generate the list of neighbors
for each ice floe: In the first approach, we have used a
fixed radius of 70 m around each floe in the entire ice

field. This radius is selected based on the maximum
velocity that we could have in the ice field. In the second
approach, we find the list of neighbours using a variable
radius specific to each floe pair. Finally, we have done
another experiment on ice fields of different sizes to show
the scalability of the parallel implementation.

5.2.1 Results

The CPU computation time per iteration to simulate the
behaviour of the ship in a large ice field, which has 9,801 ice
floes, for all five different durations (4,000, 5,000, 6,000,
7,000, 8,000), is about 1 second but the GPU time is about
0.09 second. Therefore, the speed up of using the GPU
approach is about 11 times. Moreover, the simulation is
hyper-real-time since the computation time per iteration is
less than the simulation time step ðDt ¼ 0:1 sÞ.

Fig. 8 shows the CPU and GPU computation time per
iteration to simulate the behaviour of the ship in different
ice fields, for the same number of iterations (1,850). As we
see in Fig. 8 we can tell that the GPU approach gets faster
than the CPU approach as the number of ice floes increases.
Moreover, the simulation is hyper-real-time since the com-
putation time per iteration is less than the simulation time
step ðDt ¼ 0:1 sÞ.

Fig. 9 shows the speed up of the GPU approach using ice
fields of different sizes. As we see in Fig. 9 we can tell that
the speed up increases as the number of ice floes increases.

5.3 Alternative Collision Detection Approach

This section describes alternative collision detection
approach that we have tried. It also discusses the perfor-
mance evaluation of the approach.

5.3.1 Uniform Grid Data Structure

In the uniform grid approach [30], a grid subdivides the sim-
ulation space into a grid of uniformly sized cells. For the sake
of simplicity, we have used a grid where the cell size is the
same as the size of the largest ice floe (double its radius).
Also, the grid that we have used is called a “loose” grid,
where each ice floe is assigned to only one grid cell based on
it is centroid. Since each ice floe can potentially overlap sev-
eral grid cells, this means that in the collision processing we
must also examine the ice floes in the neighboring cells (nine
cells in total in 2D grid) to see if they are touching the ice floe.

Fig. 7. Computation time per iteration of the three GPU approaches
(456 floes).

Fig. 8. Computation time per iteration for different ice fields.

Fig. 9. GPU approach speed up for different ice fields.

3480 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

The grid is built using sorting. The algorithm to build
the grid consists of several kernels. The first one
“calcHash” calculates a hash value for each ice floe based
on its cell id. We have used the linear cell id (the address
calculation is always bounded by the grid size which is a
power of two) as the hash. The kernel stores the results to
the “particleHash” array in global memory as a pair of
unsigned integers (uint2) pair (cell hash, ice floe id).

We then sort the ice floes based on their hash values. The
sorting is performed using the fast radix sort provided by
the CUDPP library, which uses the algorithm described in
[31]. This creates a list of ice floe ids in cell order. In order
for this sorted list to be useful, we need to be able to find the
start of any given cell in the sorted list. This is done by run-
ning another kernel “findCellStart”, which uses one thread
per ice floe and compares the cell index of the current ice
floe with the cell index of the previous ice floe in the sorted
list. If the index is different, this indicates the start of a new
cell, and the start address is written to another array using a
scattered write. Also, the index of the end of each cell is
found in a similar way.

Results. Fig. 10 shows the GPU computation time per iter-
ation to simulate the behaviour of the ship in the first ice
field which has 456 ice floes for all five different durations.
Variable Radius is the computation time using the list of
neighbours approach that we have discussed in Section 5.2
and Uniform Grid is the computation time using the uni-
form grid approach.

As we see in Fig. 10 we can tell that the uniform grid
approach is slower than the list of neighbours approach.
Therefore, we have used the list of neighbours approach in
our implementation.

6 MODEL VALIDATION

In themodel validationwemodeled the ship and the ice floes
as polypropylene pieces. Then, we did a physical experi-
ments in the tank. After that we compared the velocities and
the positions of some of the ice floes and the ship that

obtained from the physical experiments with the velocities
and the positions of the same ice floes and the ship that
obtained from the numerical simulation. In the physical
experiments we didn’t model the contacts. Also, if there is no
ice that means there will be no contact. In the model valida-
tion we just validated the positions and velocities of the ship
and some of the ice floes.We didn’t validate the forces.

6.1 Modelling the GPGPU Model

The GPGPU model is validated using physical model
experiments, which are designed to approach the boundary
conditions of the GPGPU model as closely as possible. Most
important are the degrees of freedom for the floes and the
vessel: the floes have three degrees of freedom, movement
in x-and y-direction and rotation around the z-axis. This
means that rafting and rubbling are excluded. The ship is
restricted to one degree of freedom, movement in x-direc-
tion (forward movement). Fig. 11 shows the 2D concept and
the axis used.

6.2 Physical Model Experiments

The main goal, as described above is divided into five
subgoals:

A) To develop a repeatable method of creating ship-floe
and floe-floe collisions in the lab.

B) To develop a reliable method to register and mea-
sure positions and rotations over a given period of
time.

C) To develop a method to analyze and quantify the
results.

D) To develop a method to compare the results to a
numerical simulation.

E) Validate the numerical model and make
recommendations.

6.2.1 Method of Creating Ship-Floe and Floe-Floe

collisions

The experiments are carried out in a transparent acrylic tank,
located in the marine laboratory of Memorial University of
Newfoundland’s Engineering and Applied Sciences Faculty.
The tank measures 7.9 meter in length, 1.47 meters wide and
0.97 meters deep and the walls are constructed out of acrylic
glass to enable an all-round view, as is shown in Fig. 12.

The ship and the floes are constructed out of polypropyl-
ene, with a density of 905 kg/m3, which is the density of
ice. Polypropylene is chosen because it has the right density

Fig. 10. Computation time per iteration using the uniform grid and list of
neighbours approaches (456 floes).

Fig. 11. Schematic view of the 2D concept used in the model. Fig. 12. Drawing of the acrylic tank, dimensions are in meters.

ALAWNEH ET AL.: HYPER-REAL-TIME ICE SIMULATION AND MODELING USING GPGPU 3481

and it doesn’t melt. These properties are close to the bound-
ary conditions of the GPGPU model, which assumes rigid
body behaviour and completely elastic collisions. Finally,
the material can be reused many times, which makes it an
ideal material for tank testing.

The floes are 12.7 mm thick (1=2 inches) and randomly
shaped into convex polygons with three to six sides. The
vessel itself is made out of a 50.8 mm thick (2 inches) sheet
of polypropylene, has a overall length of 0.91 m (36 inches)
and a beam of 0.178 m (7 inches). A small recess was
machined into the vessel to reduce the weight and increase
the freeboard. The floes and the vessel do not change shape
over the depth, because of the 2D restriction. Fig. 13 shows
the vessel with its main dimensions.

The vessel is controlled using an overhead carriage,
which is connected to the beam of the vessel using an alumi-
num rod. The carriage is suspended and moved by a wire
loop, mounted over the centerline of the tank. The wire is
driven by a variable speed motor, which is controlled by a
DC controller (see Fig. 14). Unfortunately, the overhead car-
riage is not stiff enough to restrict all the vessel’s move-
ments in sway and yaw direction. Therefore, the criteria set
for the experiment (the vessel only moves in x-direction) is
not entirely met. However, the error introduced is relatively
small, as is shown in Section 6.2.4.

6.2.2 Method to Register and Measure Positions and

Rotations over a Given Period of Time

Movements of vessel and the floes in the tank are recorded
on camera during the entire experiment. This camera is
located under the tank and looks up through the acrylic bot-
tom of the tank. This way, access to the camera is easier, but
the camera’s view is limited to one segment of the tank, due
to the structural support of the acrylic tank. This limited the
maximum dimensions of the ice field.

Also, due to the camera placement under the tank,
some refraction takes place when the light travels from
the water, through the acrylic glass to the air. The theoret-
ical refraction is calculated and the results showed that
due to this specific combination of water, acrylic and air
only a neglectable refraction occurs.

The floes and ship are outfitted with targets, so they can
be tracked using image processing software. A “bow tie”

target is designed which differs a little from the typical
cross-pattern, as is seen in Fig. 15. This design is chosen
because it presents a single large coloured surface (a cross-
pattern design has two), which makes it easier to find the
target and remove computational noise. Also, the design
makes it easier to recognize the direction of the floe and
thus calculate the rotational velocity during the experiment.

6.2.3 Method to Analyze and Quantify the Results

The method used to analyze the data filters all but the given
colour range from the frames. The exact location and orien-
tation of the target is then calculated and saved for each
frame in the video. The velocities are calculated by compar-
ing the change in target position between frames, with a
frame rate of 30 frames per second.

The camera footage, Fig. 16 shows one frame, is proc-
essed using Matlab. First of all, the user interface enables
the user to crop and rotate the video. By doing this, all
the parts of the image outside of the tank boundaries are
removed and the sides and top of the image can be used
as a reference frame to determine the exact location of
the floes and the vessel. Also, the user is able to deter-
mine which part of the video is processed and which
colours are tracked.

The processing starts with separating the colour informa-
tion (rgb or red, green and blue) into separate matrices.
Next, a colour threshold is used to find the colour targets.
This threshold sets the value of the pixel to 255 if the colour
is within the threshold and to 0 if it is not. Combining the
information of all three images (red, green and blue) gives
Fig. 17a. The white areas are within (all) the thresholds, the
coloured images are within one or two rgb values and the
black areas are outside the thresholds. This colourful image
is used to calibrate the threshold, as the colours show which
part of the image has to be altered. Finally the image is con-
verted into a binary image, Fig. 17b, for further processing.

Fig. 13. Design drawing of the vessel used in the experiments.

Fig. 14. Schematic experiment layout, showing the vessel, some floes
and the towing carriage above the tank.

Fig. 15. Cross design (a) and Bow Tie design (b).

Fig. 16. Bottom-up view of floes and a ship, outfitted with “bow tie”
targets.

3482 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

Using the built-in functions filling and area, the gaps in
the “bow tie” are filled and noise (small areas that fall
within the threshold) is removed. The result is shown in
Fig. 17c. Using this image, the centroid and orientation of
the “bow tie” is calculated and saved. Next, the following
frame is analyzed in the same way.

The colours most suitable for this tracking method are
blue, yellow and red. Green is also usable, although it is
found to be quite close to the shade of blue. Using this
method, two targets of the same colour cannot be tracked at
the same time, because the program will just average the
two and place the centroid between targets. However, for
the first validation of the model, tracking only four targets
(the ship and three floes) suffices.

6.2.4 Method to Compare the Results to a Numerical

Simulation

The starting position of all the floes, taken at the time of first
ship contact, is manually converted into a file. This file type
is used as the input for the GPGPU simulation and contains
all the positions and initial velocities of the bodies (vessel,
floes and sides).

The GPGPU simulation processes the input file and the
resulting position and velocities for each floe and the vessel
over time are compared with those from the experiment,
creating a plot with overlaying directions and velocity pro-
files. A situation with one floe and the vessel is shown in
Fig. 18 and a pack ice simulation is shown in Fig. 19. Both
figures display the position (a), velocity in x-direction

Fig. 17. Three stages of thresholding. First selecting areas based on rgb-colour, converting them to a binary image and removing the noise.

Fig. 18. Comparison between the numerical model (Num) and experimental data (Exp) of an one ship and one floe situation.

ALAWNEH ET AL.: HYPER-REAL-TIME ICE SIMULATION AND MODELING USING GPGPU 3483

(b) and velocity in y-direction (c). The experimental data
contained some noise, which is filtered by averaging. Also,
due to the resolution of the camera and the thresholding
method, a change in centroid of just a couple of pixels indu-
ces in velocity.

The ship in the experiment is able to sway a little, which
is visible on the graphs. However, these disturbances are
relatively small compared to the floe velocities.

Finally, the graphical output of the numerical model ena-
bles the comparison with the experiment data by placing
both videos next to each other, as is shown for four frames
in Fig. 20.

6.2.5 Validation of the Numerical Model and

Recommendations

The model is validated in a qualitative way, visually com-
paring the data from the experiment with the GPGPU simu-
lations. Conclusions can be drawn from this comparison,
because the data sets are obviously different.

Based on the comparison of four experiments with only
one floe and the vessel and one experiment with thirty floes
and one vessel, the conclusions are as follows:

1) The hydrodynamics of the floes (water drag,
added mass and wave damping) are insufficient
in the GPGPU model. This shows floes (in open
water, see Fig. 18) loosing little velocity over time

compared to the experiments. Since the model is
used to model pack ice, open water behaviour is
of less importance than collisional behaviour.
However, it does influence the speed at which the
floes collide and thus influences the “chain of
events”.

2) The GPGPU model, in pack ice situations (Fig. 19),
shows positions and velocities at the early stage of
the simulation which are close to the experimental
values. This leads to the conclusion that the colli-
sions are modelled quite realistically. However, over
time the average velocity of the floes in the numeri-
cal model is still higher than the velocity of the floes
in the experiment, due to the low loss of energy in
the open water behaviour.

3) In the experiment, it is noticeable that the surface
tension makes floes stick together, influencing their
motions and speeds. It is clearly seen how the floes
follow a different trajectory in Figs. 19a and 20. This
is not incorporated in the model (because in large
scale, it is neglectable) but is important in the scale
used for the experiments.

7 CONCLUSION

The experiment demonstrated performance benefits for
simulating the complex mechanics of a ship operating in
pack ice. It is clear that GPGPU has the potential to

Fig. 19. Pack ice comparison, numerical model (Num) and experimental data (Exp).

3484 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

significantly improve the processing time of highly data
parallel algorithms.

The discussion and results have described a new class of
model that integrates a number of old ideas into a new capa-
bility. The recent developments in GPU computation have
permitted the modeling of a massive event set in faster than
real time, using affordable desktop computer hardware.
With demands for greater safety and greater understanding
of ship and structure operations in polar regions, there is a
need for new simulation tools. The GPU event mechanics
approach permits the user to model complex problems in a
timely and practical way.

The numerical model shows the general trends which are
also visible in the experimental data. Especially in the pack
ice scenario, it shows realistic behaviour. However, there
are some points where the model needs improvement, but
the data collected in this research can prove useful when
improving the model. First of all, the open water behaviour
of the numerical model is not accurately predicted, resulting
in an unrealistically high open water velocity of the floe.
Secondly, due to the (small) scale of the experiment, surface
tension is an important parameter in the floe behaviour,
while it is not incorporated in the model. The collisions,
however, tend to be modelled more realistically and follow
the general trend seen in the experiments.

8 FUTURE WORK

While the results so far are promising, we have not yet to
reach the point where the simulation is fast enough to be
practically used for planning ice management activities in
realistic size ice fields. Further development and optimiza-
tion are necessary to achieve this. One way to achieve a fast
enough simulation for a large ice fields is to implement the
simulator using multiple GPUs.

The numerical model is a work in progress. The version
discussed here tracks a single vessel through a simple open
ice pack and it has the following features:

� Floe edge flexural failure, with new floe creation
� Wind loads on floes
� Current forces on floes.
Further enhancements are being planned that will add:

� Rafting behavior (2.5D)
� Floe Splitting
� Simplified Ridging at floe-floe contacts.
The above enhancements can be implemented in the cur-

rent 2.5D model. To take the technology to an entirely new
level, the modeling will need to be implemented in a full 3D
framework.

With an improved model, an improved method also
needs to be found to validate the model through model
experiments. This should include better controlled ship
motions (so that sway and yaw motions are resisted), a
more realistic representation of ice floes and a more effec-
tive quantitative method to compare the trajectories
between the experiments and GPGPU simulations.

ACKNOWLEDGMENTS

This research has been done under STePS2 project and was
supported by: ABS, Atlantic Canada Opportunities Agency,
BMT Fleet Technology, Husky Oil Operations Ltd, Research
and Development Council, Newfoundland and Labrador
and Samsung Heavy Industries. This paper was presented
in part at the 14th IEEE International Conference on High
Performance Computing and Communications, 2012. Shadi
Alawneh is the corresponding author.

REFERENCES

[1] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element
Method: Its Basis and Fundamentals. 6th ed. London, U.K.:
Butterworth, May 2005.

[2] S. Luding, “Introduction to discrete element methods: Basic of
contact force models and how to perform the micro-macro transi-
tion to continuum theory,” Eur. J. Environ. Civil Eng., vol. 12,
nos. 7/8, pp. 785–826, 2008.

[3] D. Tskhakaya, “The particle-in-cell method,” in Computational
Many-Particle Physics (Lecture Notes in Physics Series), vol. 739,
H. Fehske, R. Schneider, and A. Weie, Eds. Berlin, Germany:
Springer, 2008, pp. 161–189.

[4] (2009, Mar.). Haxon, Ice floe at oslofjord [Online]. Available:
http://www.panoramio.com/photo/19618780

[5] J. Blanchette andM. Summerfield, C++GUI Programming with QT 4
(Prentice Hall Open Source Software Development Series), 2nd ed.
EnglewoodCliffs, NJ, USA: Prentice-Hall, Feb. 2008.

[6] J. Adams, J. Sheppard, S. Alawneh, and D. Peters, “Ice-floe simu-
lation viewer tool,” presented at the Newfoundland Electr., Comput.
Eng. Conf., St. John’s, NL, Canada, Nov. 2011.

Fig. 20. Comparison between the numerical simulation and the experi-
ments of a single case. The bodies in the numerical model are manually
given coloured dots for convenience.

ALAWNEH ET AL.: HYPER-REAL-TIME ICE SIMULATION AND MODELING USING GPGPU 3485

[7] S. Alawneh and D. Peters, “Ice simulation using GPGPU,” in Proc.
IEEE 14th Int. Conf. High Perform. Comput. Commun., 9th Int. Conf.
Embedded Softw. Syst., 2012, pp. 425–431.

[8] S. Alawneh, D. Peters, and R. Dragt, “Ice simulation using
GPGPU,” presented at the Int. GPU Technol. Conf., San Jose, CA,
USA, 2013.

[9] R. Dragt, S. Bruneau, and S. Alawneh, “Design and execution of
model experiments to validate numerical modelling of 2D ship
operations in pack ice,” presented at the Newfoundland Electr.
Comput. Eng. Conf., St. John’s, NL, Canada, Nov. 2012.

[10] C. Daley, S. Alawneh, D. Peters, B. Quinton, and B. Colbourne,
“GPU modeling of ship operations in pack ice,” presented at the
Int. Conf. Exhib. Perform. Ships Structures Ice, Banff, AB, Canada,
2012.

[11] C. Daley, S. Alawneh, D. Peters, and B. Colbourne, “GPU-event-
mechanics evaluation of ice impact load statistics,” presented at
the Offshore Technol. Conf., Houston, TX, USA, 2014.

[12] E. Enkvist, P. Varsta, and K. Riska, “The ship-ice interaction,” in
Proc. Int. Conf. Port Ocean Eng. Arctic Conditions, 1979, pp. 977–
1002.

[13] T. Kotras, A. Baird, and J. Naegle, “Predicting ship performance in
level ice,” Trans. Soc. Naval Archit. Marine Eng., vol. 91, pp. 329–
349, 1983.

[14] P. Valanto, “The resistance of ships in level ice,” Trans. Soc. Naval
Archit. Marine Eng., vol. 109, p. 53–83, 2001.

[15] G. Lindqvist, “A straightforward method for calculation of ice
resistance of ships,” in Proc. Int. Conf. Port Ocean Eng. Arctic Condi-
tions, 1989, vol. 2, pp. 722–735.

[16] A. Keinonen, B. R. Revill, and A. Reynolds, “Ice breaker character-
istics synthesis,” AKAC Inc., Transportation Develop. Centre,
Ottawa, ON, Canada, Tech. Rep. TP 12812 E., 1996.

[17] K. Riska, M. Patey, S. Kishi, and K. Kamesaki, “Influence of ice
conditions on ship transit times in ice,” in Proc. Int. Conf. Port
Ocean Eng. Arctic Conditions, 2001, vol. 2, pp. 729–745.

[18] R. Lubbad and S. Løset. (2011). A numerical model for real-time
simulation of shipice interaction. Cold Regions Sci. Technol.
[Online]. 65(2), pp. 111–127. Available: http://www.sciencedir-
ect.com/science/article/pii/S0165232X10001734

[19] P. Kipfer, M. Segal, and R. Westermann, “UberFlow: A GPU-
based particle engine,” in Proc. ACM SIGGRAPH/EURO-
GRAPHICS Conf. Graph. Hardware, 2004, pp. 115–122.

[20] A. Kolb, L. Latta, and C. Rezk-Salama, “Hardware-based simula-
tion and collision detection for large particle systems,” in Proc.
ACM SIGGRAPH/EUROGRAPHICS Conf. Graph. Hardware, 2004,
pp. 123–131.

[21] S. Green. (2004). Nvidia particle system sample [Online]. Available:
http://download.developer.nvidia.com/developer/SDK/

[22] Y. Popov, O. Faddeyev, D. Kheisin, and A. Yalovlev, Strength of
Ships Sailing in Ice. Leningrad, Russia: Sudostroenie, 1967.

[23] C. Daley, “Energy based ice collision forces,” presented at the 15th
Int. Conf. Port Ocean Eng. Arctic Conditions, Helsinki, Finland,
1999.

[24] C. Daley and A. Kendrick, “Direct design of large ice class ships
with emphasis on the midbody ice belt,” presented at the 27th Int.
Conf. Offshore Mech. Arctic Eng., Estoril, Portugal, 2008.

[25] Nvidia, “Cuda development tools v2.3. getting started,” 2009.
[26] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel

programming with cuda,” Queue, vol. 6, pp. 40–53, Mar. 2008.
[27] D. Eberly. (2008). Intersection of convex objects: The method of

separating axes [Online]. Available: http://www.geometrictools.
com/Documentation/MethodOfSeparatingAxes.pdf

[28] M. I. Shamos, “Computational geometry,” Ph.D. dissertation,
Dept. Comput. Sci., Yale Univ., New Haven, CT, USA, 1978.

[29] J. O’Rourke, Computational Geometry in C, 2nd ed. New York, NY,
USA: Cambridge Univ. Press, 1998.

[30] C. Ericson, Real-Time Collision Detection. San Mateo, CA, USA:
Morgan Kaufmann, 2005.

[31] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting
algorithms for manycore GPUs,” in Proc. IEEE Int. Symp. Parallel
Distrib. Process., 2009, pp. 1–10.

Shadi Alawneh received the BEng degree in
computer engineering from the Jordan University
of Science and Technology, Irbid, Jordan in
2008, the MEng and PhD degrees in computer
engineering from the Memorial University of
Newfoundland, St. John’s, NL, Canada, in 2010
and 2014, respectively. Then, he joined the Hard-
ware Acceleration Lab at IBM Canada as a staff
software developer from May 2014 through
August 2014. He is currently a research engineer
at Smart Solutions for Challenging Environments

(C-CORE), St. John’s, NL, Canada. His research interests include paral-
lel and distributed computing, general purpose GPU computing, numeri-
cal simulation and modeling, software optimization and computational
geometry. He is a young professional member of the IEEE.

Roelof Dragt received the BSc degree in marine
engineering and the MSc degree in offshore engi-
neering from the Delft University of Technology,
Delft, The Netherlands, in 2011 and 2013, respec-
tively. Since 2013, he has been a scientist at TNO
(Netherlands Organization for Applied Scientific
Research) within the Structural Dynamics Depart-
ment. He conducts both experimental as theoreti-
cal research, specializing in failure mechanisms in
the offshore andmaritime environment.

Dennis Peters is an Associate Professor and
Head of Electrical and Computer Engineering at
Memorial University in St. John’s, NL, Canada
where he has been a member of Faculty since
1998. He earned the B.Eng. (Electrical) degree at
Memorial University in 1990, before going to
work in the high-tech industry at Newbridge Net-
works (now Alcatel) in Ottawa, Ontario. After two
years in industry he returned to school, this time
at McMaster University in Hamilton, Ontario
where he completed the M.Eng. (Electrical &

Computer) in 1995 and Ph.D. (Electrical & Computer Engineering) in
2000. His research involves techniques for design and verification of
software and computer systems, with particular focus on high perfor-
mance computing, simulation, real-time applications and parallel or dis-
tributed processing.

3486 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

Claude Daley received the BEng degree in civil
engineering from the University of Western
Ontario, in 1977, and the master’s degree in
structures and mechanics from Princeton Uni-
versity. In 1989, he was posted to Helsinki in a
collaborative research project between Canada
and Finland. During three years in Helsinki, he
received the doctorate of technology in the
area of ice mechanics and arctic naval archi-
tecture. Then, in 1995 he joined Memorial Uni-
versity. His current research focuses on ice

mechanics and ice loads on ships; plastic strength and design of ship
structures; concepts for rational ship structural design regulations;
structural risk; and related matters. He is a member of the Interna-
tional Ship Structures Committee, member of the committee on Con-
dition Assessment of Aged Ships. He is also currently on the Board
of Examiners of the Professional Engineers and Geoscientists of
Newfoundland and Labrador, on a curriculum committee of the
Canadian Council of Professional Engineers and is on the Executive
Committee of the Senate of Memorial University.

Steve Bruneau received the graduate degree in
civil engineering from Memorial University’s in
1987, he was for a few years in the structural
steel and construction business before heading
to the University of Western Ontario, Boundary
Layer Wind Tunnel. There, he was on a few wind
related studies most notable of which are the top-
sides wind analysis for the Hibernia Production
Platform and the pedestrian level wind analysis
for the Sears Tower in Chicago. Further studies
in fluids led to an MESc degree in industrial aero-

nautics and hydrodynamics. In 1992, he returned to Newfoundland to
work at C-CORE, immediately becoming immersed in the ongoing
iceberg design load work for the Terra Nova floating production system.
This work prompted his PhD studies at Memorial University in ice loads,
but not long after startup, ice issues at the Confederation Bridge took
center stage and that ended up being the final theme of his doctoral the-
sis in 1996. Subsequent work at C-CORE involved de-icing systems for
microwave antennas and various iceberg engineering and management
undertakings. He joined the Faculty of Engineering and Applied Science
in January 2006 as an assistant professor in civil engineering and he
intend to focus his R&D work in niche areas of ice, wind, hydro and
energy disciplines as they relate to development in Newfoundland and
Labrador.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ALAWNEH ET AL.: HYPER-REAL-TIME ICE SIMULATION AND MODELING USING GPGPU 3487

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

