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Abstract—General Purpose computing on Graphics Processor
Units (GPGPU) brings massively parallel computing (hundreds of
compute cores) to the desktop at a reasonable cost, but requires
that algorithms be carefully designed to take advantage of this
power. The present work explores the possibilities of CUDA
(NVIDIA Compute Unified Device Architecture) using GPGPU
approach for 2D Triangulation of Polygons. We have conducted
an experiment to measure the performance of the GPU with
respect to the CPU. The experiment consists of implementing a
serial and a parallel algorithm to triangulate 2D polygons and
executing both algorithms on several different sets of polygons
to compare the performance. We also present an application that
uses the polygon triangulation.
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I. INTRODUCTION

“Commodity computer graphics chips, known generically
as Graphics Processing Units or GPUs, are probably today’s
most powerful computational hardware for the dollar. Re-
searchers and developers have become interested in harnessing
this power for general-purpose computing, an effort known
collectively as GPGPU (for ‘General-Purpose computing on
the GPU’).”[1] GPUs are particularly attractive for many ge-
ometric problems, not only because they provide tremendous
computational power at a very low cost, but also because this
power/cost ratio is increasing much faster than for traditional
CPUs.

A reason for this is a fundamental architectural difference:
CPUs are optimized for high performance on sequential code,
with many transistors dedicated to extracting instruction-level
parallelism with techniques such as branch prediction and
out-of-order execution. On the other hand, the highly data-
parallel nature of graphics computations enables GPUs to use
additional transistors more directly for computation, achieving
higher arithmetic intensity with the same transistor count.[1]
Many other computations found in modelling and simulation
problems are also highly data-parallel and therefore can take
advantage of this specialized processing power.

Hence, in this research we are trying to use the benefit
of the high performance of the GPU to implement a fast
algorithm to triangulate 2D polygons, which can be used to
solve several geometric problems like collision detection or
the point inclusion test. Our goal in this paper is to study the

cost of implementing a 2D polygon triangulation algorithm
in CUDA and its benefits in terms of performance against an
equivalent CPU implementation.

A. Application of 2D Polygon Triangulation

The Sustainable Technology for Polar Ships and Structures
(referred to as STePSS or STePS2)a project supports sustain-
able development of polar regions by developing direct design
tools for polar ships and offshore structures. Direct design
improves on traditional design methods by calculating loads
and responses against defined performance criteria. The project
goal is to increase the understanding of interactions between
ice and steel structures such as ships and oil rigs. The project
began in July 2009 and has a duration of five years. It takes
place at the St. John’s campus of Memorial University of
Newfoundland and is funded by government and private sector
partners. The deliverables of the project include a numerical
model that accurately handles collision scenarios between ice
and steel structures. We are using General Purpose GPU
computing, or GPGPU, to implement some of the numerical
models in this project.

One of the most important applications of polygon trian-
gulation is the collision detection. We have used the polygon
triangulation to handle the collision detection in an ice floe
simulation, which is described below.

Sea ice is a complex natural material that can damage ships
and offshore structures. The concept presented here permits the
practical and rapid determination of ship-ice and ice-structure
interaction forces and effects in a complex ice regime. In
this context ”rapid” is meant to mean at least real-time with
the aim to be hyper-real-time. The term practical means that
the method can be implemented using software and hardware
that is reasonably affordable by typical computer users. The
method is designed to take advantage of massively parallel
computations that are possible using GPU hardware. The main
idea of the method is to treat ice as a set of discrete objects
with very simple properties, and to model the system mechan-
ics mainly as a set of discrete contact and failure events. In
this way it becomes possible to parallelize the problem, so
that a very large number of ice floes can be modeled. Existing
methods (such as finite element and discrete element methods,

ahttp://www.engr.mun.ca/steps2/index.php
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and others such as Particle in Cell methods) are built on the
ideas of continuum mechanics. Unlike existing approaches,
the Ice Event Mechanics Modeling (IEMM) method builds a
system solution from a large set of discrete events occurring
between a large set of discrete objects. The discrete events
among the discrete objects are described with simple event
equations (event solutions). The approach is based on the
premise that aggregate behavior is only weakly dependent on
the continuum processes inside ice event, but very strongly
dependent on the sequence of events. Each discrete collision
and failure (fracture) that occurs creates the initial conditions
for the subsequent event. The collisions and fractures occur
so fast (relative to the time between events) that they can be
considered to be instant, which is to say that they are events
rather than processes.

The particular problem that we are investigating is to
simulate the behaviour of floating ice floes (pack ice, see Fig.
1) as they move under the influence of currents and wind and
interact with land, ships and other structures, possibly breaking
up in the process. In a two-dimensional model, we model the
floes as polygons and perform a discrete time simulation of
the behaviour of these objects. The goal of this work is to
be able to simulate behaviour of ice fields sufficiently quickly
to allow the results to be used for planning ice management
activities, and so it is necessary to achieve many times faster
than real-time simulation.

Figure 1: Ice Floe[2]

The STePS2 ice simulation project is structured in two
components, the Ice Simulation Engine, which uses the trian-
gulation to handle the collisions between the ice floes, and the
Ice Simulation Viewer, which is being developed to display the
data produced by the simulation engine. The simulation viewer
displays frames of ice field data sequentially to provide its user
with a video of a simulation of the field. It is currently used by
the STePS2 software team to help determine the validity of the
data calculated by the simulation and will eventually be used to
present results to project partners. The Ice Simulation Viewer
is being developed in C++ using the Qt [3] user interface
framework. Fig. 2 shows a screenshot of the main interface
of the Ice Simulation Viewer with ice field loaded. For more

details about the Ice Simulation Viewer see [4].

Figure 2: Ice Simulation Viewer

II. METHODOLOGY

A. Stream Processing

The basic programming model of traditional GPGPU is
stream processing, which is closely related to SIMDb. A
uniform set of data that can be operated upon in parallel
is called a stream. The stream is processed by a series of
instructions, called a kernel [5]. Stream processing is a very
simple and restricted form of parallel processing that avoids
the need for explicit synchronization and communication man-
agement. It is especially designed for algorithms that require
significant numerical processing over large sets of similar data
(data parallelism) and where computations for one part of
the data only depend on ‘nearby’ data elements. In the case
of data dependencies, recursion or random memory accesses
stream processing becomes not reasonable [5], [6]. Computer
graphics processing is well suited to this, where vertices,
fragments and pixels can be processed independently of each
other, with clearly defined directions and address spaces for
memory accesses. The stream processing programming model
allows for more throughput oriented processor architectures.
For example, without data dependencies caches can be reduced
in size and the transistors can be used for ALUs instead. Fig.
3 shows a simple model of a modern CPU and a GPU. The
CPU uses a high proportion of its transistors for controls and
caches while the GPU uses them for computation (ALUs).

B. CUDA

CUDA is a comprehensive software and hardware architec-
ture for GPGPU that was developed and released by Nvidia in
2007. It is Nvidia’s move into GPGPU and High-Performance
Computing (HPC), combining huge programmability, perfor-
mance, and ease of use. A major design goal of CUDA is to
support heterogeneous computations in a sense that serial parts
of an application are executed on the CPU and parallel parts

bSingle Instruction Multiple Data, in the Flynn’s taxonomy of computer
architectures
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Figure 3: Simple comparison of a CPU and a GPU [7]

on the GPU[8]. A general overview of CUDA is illustrated in
Fig. 4.

Figure 4: CUDA overview [9]

Nowadays, there are two distinct types of programming
interfaces supported by CUDA. The first type is using the
device level APIs (left part of Fig. 4) in which we could use
the GPGPU standard DirectX Compute by using the high level
shader language (HLSL) to implement compute shaders. The
second standard is OpenCL created by the Khronos Group (as
is OpenGL). OpenCL kernels are written in OpenCL C. The
two approaches don’t depend on the particular GPU hardware
so they can be used with GPUs from different vendors.
In addition to that, there is a third device-level approach
through low-level CUDA programming which directly uses
the driver. One advantage for this approach is it gives us
a lot of control but this approach is complicated because
it is low-level (it interacts with binaries or assembly code).
Another programming interface is the language integration
programming interface (right column of Fig. 4). As explained
in [9], it is better to use the C runtime for CUDA, which is
a high-level approach that requires less code and is easier to
program and debug. This approach also supports other high-
level languages such as Fortran, Java, Python, or .NET through
bindings. Therefore, in this work we have used the C runtime
for CUDA.

The CUDA programming model, as discussed in [10],
suggests a helpful way to solve a problem by splitting it in
two steps: Firstly into coarse independent sub-problems (grids)

and then into finer sub-tasks that can be executed cooperatively
(thread blocks). The programmer writes a serial C for CUDA
program which invokes parallel kernels (functions written
in C). The kernel is usually executed as a grid of thread
blocks. In each block the threads work together through barrier
synchronization and they have access to a shared memory
that is only visible to the block. Each thread in a block has
a different thread ID and each grid consists of independent
blocks, each of which has a different block ID. Grids can
be executed either independently or dependently. Independent
grids can be executed in parallel provided that the hardware
being used supports executing concurrent grids. Dependent
grids can only be executed sequentially. There is an implicit
barrier that ensures that all blocks of a previous grid have
finished before any block of the new grid is started. In our
work, we have one kernel that triangulates all polygons and
we have assigned one thread for each polygon to perform the
triangulation.

C. Polygon Triangulation By Ear Clipping

Polygon Triangulation is the process of decomposing a sim-
ple polygon into triangles. From computational geometry we
know that any triangulation of a simple polygon of n vertices
always has n − 2 triangles. There are several algorithms that
have been used for polygon triangulation. In our work, we have
used the ear clipping algorithm, which has quadratic complex-
ity, O(n2), in the number of verticies. Another algorithm that
has a linear complexity, O(n), is known in theory [11] but
it is more difficult to implement. Based on the research that
we have done to find an algorithm for triangulating a simple
polygon, we haven’t found an algorithm simpler than the one
that we have used in this work.

An ear of a polygon is a triangle formed by three con-
secutive vertices V0, V1, V2 such that no other vertices of the
polygon are located inside the triangle. The line segment
between V0 and V2 is called a diagonal of the polygon. The
vertex V1 is called the ear tip. Based on [12], any simple
polygon with at least four vertices has at least two non-
overlapping ears. Therefore, the basic idea of this algorithm
as illustrated in Algorithm 1 is to find such an ear, remove it
from the polygon and repeat this process until there is only
one triangle left.

Algorithm 1 :Ear clipping

1) while n > 3 do
a) Locate an ear tip v2
b) Output the the triangle v1, v2, v3
c) delete v2

Figure 5 shows an example that explains the triangulation
algorithm.

499



Figure 5: Ear Clipping Process[13]

D. Experimental Procedure

The problem explored in this paper is to do 2D Triangulation
of polygons. We have implemented both serial and parallel
solutions and have run both algorithms using 6 data sets of
polygons of different set size (500, 1000, 2000, 4000, 8000,
16000) and we have measured the speed-up (ratio of time for
serial algorithm to that for parallel algorithm).

We have used Intel(R) Xeon(R) CPU @2.27GHz and a GPU
Tesla C2050 card which is shown in Fig. 6. This card has
448 processor cores, 1.15 GHz processor core clock and 144
GB/sec memory bandwidth.

III. RESULTS

Fig. 7 shows the CPU and GPU time to triangulate polygons
for all six data sets. As we see in Fig. 7, we can tell that
the GPU time is significantly less than the CPU time and as
we increase the number of polygons the CPU time gets much
higher than the GPU time. Therefore, we conclude the GPU is
more efficient when we have huge number of polygons. This
increase in efficiency is seen more clearly in Fig. 8, which
shows the speed up for all six set sizes. We notice that the

Figure 6: Tesla C2050 [14]

highest speed up is when the number of polygons is 2000.
We believe this is due to the number of multiprocessors on
the card that we have used (14). In CUDA each thread block
executes on one multiprocessor. In our work we have used a
block size of 128 threads. Therefore, the number of blocks is
16 (2000/128) which is approximately equal to the number of
multiprocessors (14). So, each block is approximately handled
by one multiprocessor, but in cases with more than 2000
polygons one multiprocessor must handle more than one block.
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Figure 7: Compute Time.

Figure 8: Speed Up.

IV. RELATED WORK

Graphics Processing Units (GPUs) have a large number of
high-performance cores that are able to perform high com-
putation and data throughput. Nowadays, GPUs have support
for accessible programming interfaces and industry-standard
languages such as C. Hence, these chips have the ablility
to perform more than the specific graphics computations for
which they were designed. Developers who uses GPUs to
implement their applications often achieve speedups of orders
of magnitude vs. optimized CPU implementations [15].

There are several advantages of GPGPU that make it
particularly attractive: Recent graphics architectures provide
tremendous memory bandwidth and computational horse-
power. Graphics hardware is fast and getting faster quick.
Graphics hardware performance increasing more rapidly than
that of CPUs because of semiconductor capability, driven by
advances in fabrication technology, increases at the same rate
for both platforms.

In this section we give an overview of some applications in
which general- purpose computing on graphics hardware has
been successful.

A. Physically Based Simulation

There are several researchers who have developed particle
system simulations on GPUs. Kipfer et al. [16] described an
approach for simulating particle systems on the GPU including
inter-particle collisions by using the GPU to quickly re-order
the particles to determine potential colliding pairs. Kolb et al.
[17] described a GPU particle system simulator that provides
support for accurate collisions of particles with scene geom-
etry by using GPU depth comparisons to detect penetration.
A simple GPU particle system example is provided in the
NVIDIA SDK [18].

Several groups have used the GPU to successfully simulate
fluid dynamics. GPU solutions of the Navier-Stokes equations
(NSE) for incompressible fluid flow are described in [19], [20],
[21], [22]. Harris [23] gives an introduction to the NSE and a
complete description of a basic GPU implementation. Harris et
al. [21] used GPU-based NSE solutions with partial differential
equations (PDEs) for thermodynamics and water condensation
and light scattering simulation to develop visual simulation of
cloud dynamics. A simulation of the dynamics of ideal gases
in two and three dimensions using the Euler equations on the
GPU is described in [24].

Recent work shows that the rigid body simulation for
computer games performs very well on GPUs. Havok [25],
[26] explained an API for rigid body and particle simulation
on GPUs, which has all features for full collisions between
rigid bodies and particles, and provides support for simulating
and rendering on separate GPUs in a multi-GPU system.
Running on a PC with dual NVIDIA GeForce 7900 GTX
GPUs and a dual-core AMD Athlon 64 X2 CPU, Havok
FX achieves more than a 10x speedup running on GPUs
compared to an equivalent, highly optimized multithreaded
CPU implementation running on the dual-core CPU alone.

B. Audio and Signal Processing

GPUs have also been used to perform audio effects or
calculate audio accoustics.

Jedrzejewski [27] introduces an approach that uses the GPU
to accelerate the computation of sound paths between sound
sources and receivers. His algorithm works in the same way as
the raytracer, rays are cast from audio sources. If they intersect
with the sphere, representing an approximation of the user,
after a number of steps they will be included in an echogram
(the graphic presentation of echo soundings) that is used in
the auralization process (the process of rendering audible, by
physical or mathematical modeling). The application can run
in real time with up to 64,000 rays.

BionicFX has developed a commercial Audio Video Ex-
change (AVEX) software that can be used to accelerate audio
effect calculations using GPUs [28].

Several projects have developed GPU implementations of
the fast Fourier transform (FFT) [29], [30], [31].
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C. Computational Geometry

GPUs have been found useful in computational geometry
such as collision detection and Constructive Solid Geometry
(CSG).

Stewart et al [32] have designed an algorithm for Overlap
Graph subtraction Sequences using the GPU and explain how
it can be used with the Sequenced Convex Subtraction (SCS)
algorithm for Constructive Solid Geometry (CSG) Rendering.
The SCS algorithm for CSG sequentially subtracts convex
volumes from the depth of the pixels, known as the z-
buffer. The performance of the algorithm is determined by the
length of the subtraction sequence used. They have used an
approach which results in faster subtraction of large numbers
of convex objects from the z-buffer. Object-space intersection
detection (spatial overlap) is used as a means of producing
shorter subtraction sequences. They have used a term overlap
graph to store the spatial relationship of the objects in a
CSG product. Any CSG tree can be represented as a union
of products termed sum-of-products. CSG products consist
only of intersections and subtractions. Nodes in the graph
correspond to shapes or objects while edges in the graph
indicate spatial overlaps. Bounding volumes are used to build
the overlap graph. Experimental results indicated speed-up
factors of up to three.

Pascucci [33] has introduced an approach to compute isosur-
faces using GPUs. Using the vertex programming capability
of modern graphics cards the cost of computing an isosurface
from the CPU is transfered to the GPU. This has the advantage
that the task is off-loaded from the CPU and storing the surface
in main memory can be avoided.

V. CONCLUSION

The paper introduces the basics of GPGPU and presents
the stream processing programming model and the traditional
GPGPU approach along with CUDA and the programming
model. The experiment proved performance benefits for 2D
Triangulation of Polygons. It is clear that GPGPU has the
potential of significantly improving the processing time of
highly data parallel algorithms.

VI. FUTURE WORK

Clearly a next step in this research will be to use this
algorithm in solving other geometric problems like the point
inclusion test.
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