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Abstract—In this paper, curve-fitting and intensity-level-
selection (ILS)-based algorithms for wind parameter extraction
from shipborne X-band nautical radar images are investigated.
First, to exclude the rain cases and low-backscatter images, a
data quality control process is designed for both algorithms. An
additional process is then introduced for the ILS-based method
to improve the accuracy of wind measurements, including the
recognition of blockages and islands in the temporally integrated
radar images. For the low sea states, a dual-curve-fitting is pro-
posed. These wind algorithms are tested using radar images
and shipborne anemometer data collected on the east coast of
Canada. It is shown that the dual-curve-fitting algorithm pro-
duces improvements in the mean differences between the radar
and the anemometer results for wind direction and speed of about
5.7◦ and 0.3 m/s, respectively, under sea states with significant
wave height lower than 2.30 m. Also, a harmonic function that
is least-squares fitted to the selected range distances vector as
a function of antenna look direction is applied. Compared with
the original ILS-based algorithm, the modified procedure reduces
the standard deviation for wind direction and speed by about 4◦

and 0.2 m/s, respectively. Finally, the performance of these two
modified methods are compared.

Index Terms—Shipborne nautical radar, wind speed and direc-
tion, X-band.

I. INTRODUCTION

S EA SURFACE wind information is important for marine
navigation, and anemometers have been widely installed

on ships for this purpose. However, anemometer measurements
may be negatively impacted by the sensor’s height and the
ship’s motion and structure. Even at well-exposed locations on

Manuscript received April 24, 2014; revised June 20, 2014; accepted
September 01, 2014. Date of publication September 24, 2014; date of current
version February 09, 2015. The work of W. Huang was supported by the Natural
Sciences and Engineering Research Council of Canada (NSERC) under Grant
NSERC 402313-2012. The work of E. Gill was supported in part by the NSERC
under Grant NSERC 238263-2010 and in part by the Atlantic Innovation
Fund Award. The work of E. Gill and W. Huang was also supported by the
Department of Innovation, Business and Rural Development of Newfoundland
and Labrador under Grant 30-10921-008.

Y. Liu, W. Huang, E. W. Gill, and D. K. Peters are with the Faculty of
Engineering and Applied Science, Memorial University of Newfoundland,
St. John’s, NL A1B 3X5, Canada (e-mail: ly3562@mun.ca; weimin@mun.ca;
ewgill@mun.ca; dpeters@mun.ca).

R. Vicen-Bueno is with the Department of Signal Theory and Communi-
cations, Superior Polytechnic School, University of Alcala, Madrid 28805,
Spain (e-mail: raul.vicen@uah.es).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2014.2357426

the ship, the anemometer may have a wind speed measurement
error of up to 10% [1]. This is one of the main reasons why
efforts are now being made to retrieve wind information from
nautical radar images. Moreover, compared to traditional in situ
measurements, radar-based wind measurements have an addi-
tional advantage that they are independent of the sensor’s height
and motion [2].

X-band radar backscatter from the ocean surface is mainly
due to its interaction with the small-scale roughness gener-
ated by local wind [3]. It has been shown that the normal-
ized radar cross section (NRCS) strongly depends on wind
speed [3], [4] and direction [4], [5]. For Horizontally polar-
ized (HH-polarized) radar at grazing incidence, the NRCS has
only one peak in the upwind direction and is minimum in
the crosswind direction [4], [5], and it is an exponential func-
tion of wind speed [6]. Researchers have attempted to retrieve
wind information from nautical radar images [7]–[9]. Dankert
et al. [7] determined wind direction from quasi-stationary wind
streaks, and extracted wind speed from the temporally inte-
grated radar images and the retrieved wind direction. However,
this approach requires an additional processing step, such as
geocoding, in order to be applied to shipborne radar data
because, as a result of the platform’s horizontal motion, wind
streaks are difficult to extract [10]. Also, a 180◦ directional
ambiguity exists in the wind direction results but it can be
removed by extracting the movement of wind gusts visible in
the radar image sequence [6]. Recently, Lund et al. [8] and
Vicen-Bueno et al. [9] developed methods which are indepen-
dent of platform movement. By utilizing the radar backscatter
intensity dependence on the upwind direction, Lund et al. [8]
proposed a least-squares curve-fitting technique to identify the
upwind peak and an empirical third-order polynomial to calcu-
late wind speed. Vicen-Bueno et al. [9] developed an effective
backscatter intensity-level-selection (ILS) algorithm based on
temporal integration and spatial smoothing as well as an empir-
ical third-order polynomial geophysical model function (GMF)
to derive wind direction and speed. The latter two algorithms
can be applied to radar data collected from a moving ship,
and thus are considered in this paper. However, modifications
need to be made for these two algorithms. In the curve-fitting
process, although the data in the directions due to block-
age were excluded, the low-intensity data in many azimuthal
directions due to low sea states rather than the obstruction
by ship structures may be retained, and the result becomes
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TABLE I
DATA INFORMATION

less accurate. Under these circumstances, a second stage of
curve-fitting is proposed to reduce the wind estimation error.
On the other hand, since the obstruction of the radar field of
view or appearance of islands was not considered in [9], to
reduce the wind measurement errors in this case, an additional
process for recognizing the view of blockages and islands as
well as a similar curve-fitting technique are designed for the
intensity-level-selection algorithm.

This paper represents an extension of the work appearing in
[11] and [12] and is organized as follows. In Section II, the
X-band radar data and the reference wind data are described.
Section III introduces the data quality control procedures,
including the recognition of rain and low-backscatter images.
In Section IV, the curve-fitting, the ILS-based wind algorithms
[9], and the associated modifications are introduced. The com-
parisons of wind direction and speed with in situ measurements
are discussed in Section V. Finally, Section VI contains a
summary and reiterates the main conclusion of this work.

II. DATA OVERVIEW

The data used for testing were provided by Defence Research
and Development Canada (DRDC). The marine radars utilized
in the experiment are standard HH-polarized shipborne Decca
and Furuno nautical radars which operate at 9.41 GHz. The
Decca and Furono radars cover 360◦ in azimuth with approxi-
mate beam width of 2◦ and 1.9◦, respectively. The radar range
extends to 2160 m (starting at 240 m in the near range) with
a range resolution of 7.5 m. The radar was connected to a
Wave Monitoring System II (WaMoS II) [13]. The system digi-
tizes the radar backscatter intensities by azimuth-range bin and
scales data into 8-bit unsigned integers ([0, 255]). Sets of 32
radar images are combined into one file, and the file index
reveals the start time of each file.

The information of the data used in this paper is listed in
Table I. The collection times are shown in standard local time
coordinates. It should be noted that the first three datasets
were collected during the same sea trial but Dataset 4 was
collected from another experiment. The shipborne anemome-
ter and marine radar data were all collected on the Canadian
Navy research ship CFAV Quest [14] approximately 150 miles
from the coast of Halifax (42◦N, 62◦W) in late October, late
November and early December, 2008 [15]. Two anemometers
were installed in the port and starboard side, respectively. Only
the data measured by the starboard-side anemometer are used
because the wind results from these two anemometers are very
similar. Since the heights of the anemometers are not available,
the wind data could not be converted to the corresponding val-
ues at 10 m above the water. The anemometer wind data were

affected by the ship’s motion. Thus, the reference wind speed
and direction are calculated by removing the ship’s motion, for
which only the ship velocity over ground is considered here.
Dataset 3 is a 4-h subset of Dataset 1 which includes the data
under low sea states, and it is used to compare the perfor-
mance of dual-curve-fitting and single-curve-fitting under low
sea states. Dataset 4 is a 1-h dataset extracted from a 2-day long
experiment in late October during which data were collected
by a Furuno radar. This dataset is employed to test the mod-
ified ILS-based algorithms with respect to island recognition
and removal.

III. QUALITY CONTROL

Before using the radar data to determine the upwind direc-
tion and wind speed, a basic data quality control procedure
similar to that in [8] was undertaken for each image by ana-
lyzing the radar backscatter intensity histogram and zero-pixel
percentage. The procedure includes the recognition of rain and
low-backscatter images.

A. Rain Recognition

It has been observed that rain affects the radar backscat-
ter through volume scattering and attenuation by raindrops in
the intervening atmosphere and sea surface roughness change
resulted by rain impinging on the ocean [16], [17]. For radar
images collected during rainfall, the NRCS depends on the rain-
fall rate, drop size, radar frequency, and polarization [16]–[18].
However, in this case, the NRCS may be enhanced or dimin-
ished, depending on the specific combination of these four
factors. According to [8], due to the strong impact of rain on the
number of pixels with zero intensity in X-band nautical radar
images, the zero-pixel percentage (ZPP, i.e., ratio, expressed as
a percentage, of the number of image pixels with zero intensity
to the overall number of pixels) was identified as a quality con-
trol parameter to determine the presence of rain. For the data
presented in this paper, pixels with gray scale intensity lower
than 5 were considered as zero-intensity. This value should be
adjusted for data with a different gray scale depth. It is worth
mentioning that the blockage portion in the images should be
excluded for the ZPP calculation. Moreover, it should be noted
that the thresholds of the ZPP for recognizing rain cases for
the Decca and Furuno radars are different. The difference may
be explained by the possibly different shadowing effects due
to different antenna heights. In Dataset 1, when the ZPP of the
image was below 10%, the image was regarded as contaminated
by rain, and was excluded from the process of establishing
the third-order polynomial model functions of wind speed
for both methods. For Dataset 2, the ZPP threshold is 20%.
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Fig. 1. Range-averaged radar backscatter gray scale intensity as a function of
antenna look direction for image collected at 03:03, November 29, 2008.

Examples of the corresponding radar backscatter images and
their histograms in the presence of rain can be found in [19].

B. Low-Backscatter Image Recognition

As a result of too-low wind speed or unknown system errors,
some images may appear almost completely black with little
or no wave signature. These images are referred to as low-
backscatter images. A parameter, referred to as the low-clutter
direction percentage, is used for specifying low-backscatter
images. If the ZPP of an azimuthal direction is higher than 40%
for the Decca or 80% for the Furuno radar (empirical and also
varies with systems), the direction is considered to be a low-
clutter (including blockage) direction. Then, if the low-clutter
direction percentage (LCDP, i.e., the number of low-clutter
directions divided by the number of pulses) of an image is
higher than 90%, the image is recognized as a low-backscatter
image and will not be used for wind retrieval.

IV. WIND PARAMETER EXTRACTION ALGORITHMS

A. Curve-Fitting-Based Wind Algorithms

1) Single-Curve-Fitting: For HH-polarized X-band radars
operating at grazing incidence, it is known that the radar
backscatter intensity has only one peak in the upwind direction
[4], [5], but a second peak appears in the downwind direction
at moderate incidence angles [20], [21]. To obtain the specific
dependence on antenna look direction, radar data for the Decca
and Furuno systems are averaged over ranges 450–1500 m and
375–975 m, respectively, for each azimuthal direction θ and
are then curve fitted using a cosine square function to give the
range-averaged radar backscatter gray scale intensity as [8]

σθ = a0 + a1 cos
2(0.5(θ − a2)) (1)

where a0, a1, and a2 are the regression parameters. An example
of curve-fitting is shown in Fig. 1. The blue dots represent the
measured averaged backscatter intensity, and the best-fit curve
is shown by red line. For each individual radar image, the wind
direction can be retrieved from the upwind backscatter peak
using the model function of (1). The upwind peak direction
is given by the regression parameter a2. This corresponds to
the peak of the best-fit curve, as discussed in [8]. This method

Fig. 2. Scatter plot showing the wind speed from anemometer, correspond-
ing radar backscatter intensity, and the best-fit curve based on a third-order
polynomial function for Decca data acquired during November 28–29, 2008.

works well even when some sections of the radar field of view
are masked. Based on the radar backscatter intensity depen-
dence on wind speed, an empirical third-order polynomial can
be derived using the average radar backscatter intensity and
the reference wind speed measured by other sensors (e.g., an
anemometer). Then, radar wind speed results can be retrieved
from the average intensity value. The average radar backscatter
intensity σwSpd is calculated as [8]

σwSpd =
1

2π

∫ 2π

0

(a0 + a1 cos
2(0.5(θ − a2)))dθ. (2)

Fig. 2 shows a scatter plot of the anemometer-measured wind
speed and the corresponding radar average backscatter intensi-
ties σwSpd. The best-fit curve indicated by the red line is derived
using a least-squares method based on a third-order polynomial
function as in [8].

2) Dual-Curve-Fitting: To retrieve wind direction from a
single image, the radar backscatter intensities from the nonob-
structed antenna look directions are averaged over range to
perform the curve-fitting. The data in the directions due to
blockage were excluded. However, for some images, in many
azimuthal directions, a majority of the pixels may have a very
low intensity [see Fig. 3(a)]. These dark regions are not due
to the obstruction by ship structures but probably result from
low sea states. These low-intensity data are retained in the
curve-fitting process. Unfortunately, as shown in Fig. 3(b),
in these low-intensity azimuthal directions, the single-curve-
fitting result is not ideal. In this case, a dual-curve-fitting may be
implemented. The technique involves using the data at angles of
60◦ to the left and right of the first-guess upwind direction on
which the curve-fitting is repeated. Since the data in the direc-
tions around the direction with maximum backscatter (upwind)
usually have higher signal-to-noise ratio (SNR) than the data in
other directions, using this portion of the data for curve-fitting
leads to a more robust result. The direction range chosen for
the second curve-fitting should be wide enough to include the
upwind direction. However, if this range is too large, perfor-
mance may be affected because data with low SNR may be
included. If the range is chosen to be too narrow, the upwind
peak may be missed and the fitting result may not be good due
to a small number of data points. The ±60◦ range is chosen
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Fig. 3. Example of the Decca radar data from Dataset 1 (collected at 02:22, November 29, 2008): (a) backscatter image; (b) range-averaged backscatter intensity
as a function of antenna look direction using single-curve-fitting; and (c) range-averaged backscatter intensity as a function of antenna look direction using
dual-curve-fitting.

Fig. 4. (a) An integrated image without blockage from Dataset 1 (Decca radar). The black bar at the center shows the anemometer-measured wind direction.
(b) An integrated image with blockage from Dataset 4 (Furuno radar). (c) The selected range distances vector without curve-fitting referred to (b). (d) Curve-fitted
selected range distances vector referred to (b). The short line in (a) and (b) indicates the anemometer-measured wind direction.

since it yields satisfactory results. In the example shown in
Fig. 3(c), the dual-curve-fitting results in an improvement of
8◦, as compared to that obtained using a single-curve-fitting.
It should also be noted that, when the dual-curve-fitting is
applied, the data in the directions with nonpositive fitted val-
ues are excluded for evaluating the average radar backscatter
intensity σwSpd.

B. ILS-Based Wind Algorithms

1) Original ILS: The original ILS-based method in [9]
includes integration and smoothing of radar images, intensity-
level selection, and wind direction and speed estimation. For the
data presented in this paper, since each B-scan image (i.e., in
polar coordinates) has 288 range bins (including 32 bins asso-
ciated with the dead range) but a different number of pulses,
the radar images cannot be directly summed. Interpolation to
a standardized grid is implemented to generate B-scan images
with a uniform size of 1024 (pulses)× 288 (ranges). The tem-
poral integration is performed on the entire sequence of files
(many hours of data) by utilizing a moving average of every
32 radar images with a shift of four images. As in [9], each
time, average result is further smoothed over five range cells
(two leading and two lagging with the result being assigned to
the central cell) and an azimuthal extent of 5◦. As addressed
below, each integrated image is assigned a certain intensity level
and associated range distances vector, from which the wind
information can be extracted. The steps are as follows.

a) Intensity-Level Selection: The general technique is
given in [9] and the particulars of its present application follow.
By analyzing the histograms of the integrated radar images,
the predefined levels set for both radars in our study were
chosen as L1 = 5, L2 = 10, . . . , and L25 = 125, on a scale
of 0 to 255. In the integrated image, for each predefined
intensity level Li(i = 1, 2, . . . , 25), the first range distance
where the backscatter intensity is smaller than Li is sought
in each azimuthal direction. All the range distances associated
with each Li are then stored as elements of the range dis-
tances vector ri. From these vectors, the one with the lowest
Li, for which all elements are greater than the inner dis-
tance boundary [the near-range distance boundary plus a guard
range (7.5× 32 m + 75 m = 315 m)], is selected. After the
first eight integrated images, only the last selected level Li

and its two adjacent intensity levels Li+1 and Li−1 need to
be used to obtain three corresponding range distances vectors.
Among these three vectors, the one satisfying the inner dis-
tance boundary and having the lowest intensity level is used
for wind direction retrieval and is referred to as the retrieval
range distances vector. In the case of Fig. 4(a), the selected
intensity level from all the predefined levels is Li = 60. Its
smoothed range distances vector for Li = 60 is plotted as a
magenta ring.

b) Wind Direction and Speed Retrieval: In [9], the wind
direction is determined to be along the azimuth in which the
maximum of the retrieval range distances vector is located. It is
also assumed that wind speed u0 is related to the maximum
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Fig. 5. Dataset 4 (Furuno): (a) conversion function model; (b) range distances vector (magenta line) without island recognition; (c) range distances vector with
island recognition; and (d) map with ship track.

of the retrieval range distances vector corresponding to the
selected intensity level Li as

u0 = αi ×max{ri} (3)

where max{ri} is the maximum of the retrieval range distances
vector and αi represents the conversion rate corresponding
to the selected intensity level Li. However, the relationship
between αi and Li is nonlinear and can be fitted by the
third-order polynomial function [9]

αi = β3L
3
i + β2L

2
i + β1Li + β0 (4)

in which the parameters βj(j = 0, 1, 2, 3) can be determined
by least-squares fitting. The fitting is implemented based on
the obtained Li and αi that is calculated from (3) using in situ
wind speed and max{ri}. Fig. 5(a) shows the conversion rate
function obtained from Dataset 4. Red dots and blue stars,
respectively, represent the fitted and the calculated αi. After
the polynomial function is obtained, wind speed is calculated
from the maximum range distance associated with Li and the
selected αi.

2) Modified ILS: The following modifications have been
made to improve the robustness of the original ILS algorithm.

a) Additional Constraint: An additional constraint is
used to reduce the possibility of wind direction estimation error
caused by the noise in the very far range. In addition to being
greater than the inner distance boundary (315 m), all the ele-
ments of the retrieval range distances vector ri should also be
smaller than the outer distance boundary [far-range distance
boundary minus a guard range (7.5× 288− 300 = 1860 m)].
While searching for this range distances vector, it should be
noted that for each azimuthal direction, the first range where
the intensity is smaller than the preselected level is used rather
than the last index where the intensity is greater. This is done in
order to avoid possible interference caused by an island in the
far range.

b) Blockage Recognition: For the data considered in this
paper, shadowing of the radar field of view exists in many
images [see the example in Fig. 4(b)]. The broken part of the
selected range distances vector (marked as an open magenta
ring) shows the blocked area. It should suffice to determine the
blockage once for each radar station if the blockage is due to
a stable ship structure. However, the real-time monitoring of
blockage will allow the algorithm to be applied to a broader

class of conditions which accounts for the fact that there may
be blockage induced by severe weather or when operators delib-
erately or otherwise block data from a particular sector, but
in no particular pattern. In such cases, each integrated image
should be subjected to real-time blockage recognition. If the
percentage of zero pixels is higher than 20% in a direction, this
direction is considered to be blocked and the data located in this
part of the integrated image are discarded. Otherwise, the ILS
algorithm may fail to find a qualified predefined level.

c) Curve-Fitting: After discarding the obstructed data,
problems may still exist, as shown in Fig. 4(c). If the wind
direction is aligned with the blocked angles, the above-
mentioned algorithm will not produce the correct direction.
Inspired by the work in [8], a harmonic function, similar to (1)

ri(θ) = b0 + b1 cos
2(0.5(θ − b2)) (5)

was introduced to fit the selected range distances vector [see
Fig. 4(b)–(d)]. In (5), b0, b1, b2 are coefficients to be determined
by curve-fitting. Usually, the locus of the tip of the range dis-
tances vector forms a cardioid. This property can be utilized to
avoid multiple maxima situations and improve the accuracy of
wind direction determination. In Fig. 4(c), the range distances
vector maximum is 218.0◦ and is corrected by curve-fitting
to 254.9◦ (with respect to true North) as shown in Fig. 4(d),
whereas the corresponding anemometer-measured wind direc-
tion is 275.2◦ [see Fig. 4(b)]. Therefore, the gap in the original
range distances vector plot can be filled.

d) Island Recognition: In Fig. 5(b), a large object (yel-
low area in the top left corner) appears in the integrated image.
By observing the ship’s track, indicated by the blue dots in
Fig. 5(d), it was found that at the time of Fig. 5(b), the ship
position to which the arrow points in Fig. 5(d) is very close
to the coastline (black line). Thus, the object is probably a
small island. In the wind direction algorithm, the first range
index where the intensity is smaller than the pre-selected inten-
sity level Li is chosen. It can be inferred that if the island is
located in the far range, the island’s influence can be automat-
ically neglected. However, when the island is close to the ship,
estimation of the maximum range for Li and the wind direc-
tion may be incorrect [see Fig. 5(b)]. In this case, by utilizing
the attenuation property of the radar backscatter intensity along
range, if an intensity bump is detected in an azimuthal direc-
tion, it is assumed that the island is located in that direction and
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TABLE II
WIND SPEED AND DIRECTION RETRIEVAL ERROR STATISTICS: BIAS AND STD

the corresponding radar data will be excluded from curve-fitting
[see Fig. 5(c)]. The built-in function, findpeaks, in MATLAB is
used here to detect peaks or extrema of the intensity sequence
for each azimuthal direction. Geographic data may be used to
replace the island recognition scheme if such data are available.

V. RESULTS

The single-curve-fitting, dual-curve-fitting, original ILS, and
modified ILS-based algorithms described above were applied
to the quality-controlled Decca and Furuno radar data and the
results were compared to the reference data measured by a ship-
based anemometer (with the ship’s motion removed). Since
it must take a finite amount of time for the ocean roughness
to react to wind change, unlike anemometer, the radar may
not pick up short-time scale wind variations. As is commonly
done, 10-min averaging was applied to both the anemome-
ter and radar wind results before computing the comparison
statistics. The same data, excluding rain-contaminated and low-
backscatter cases, were used to determine the wind speed
calibration functions for both the curve-fitting and ILS-based
methods. Since the radars for Datasets 1 and 2 are different,
wind speed models were developed for each of the two radars.
The data over the periods of 11:16 Nov. 28–11:58 Nov. 29 in
Dataset 1 and 12:08 Dec. 1–21:20 Dec. 2 in Dataset 2 were used
for training for the Decca and Furuno radars, respectively. The
wind speed standard deviations (STD) of the Decca training and
validation (nontraining) data are 1.2 and 1.7 m/s, respectively;
whereas, for the Furuno radar, they are 1.6 and 2.0 m/s, respec-
tively. Thus, the statistics do not differ significantly between the
training and validation subsets. The statistics of the wind results
for each entire dataset utilizing the four algorithms are shown
in Table II.

A. Single- Versus Dual-Curve-Fitting

Fig. 6 shows the comparison of the radar-derived wind
velocities using single- and dual-curve-fitting methods with
the anemometer-measured results based on Dataset 3 collected
during 01:12 to 05:31, November 29, 2008. It can be seen
that the radar results from both methods agree well with the

anemometer data. Taking the anemometer results as the ground
truth, the STDs of wind direction and speed using single-curve-
fitting are found to be 8.3◦ and 0.9 m/s, respectively, and those
for dual-curve-fitting are, respectively, 6.6◦ and 0.8 m/s (see
Table II). It is known that the sea surface roughness increases
with wind speed. The buoy-measured significant wave heights
are plotted in Fig. 6(c) for illustration. As shown in Fig. 6(a),
improvement using dual-curve-fitting is seen during 01:12 to
02:22 when the sea states were low (significant wave height
lower than 2.30 m). During this period, based on the low-clutter
direction percentage analysis, the percentage of directions with
many low-intensity pixels is above 50% [see Fig. 6(c)]. Within
this 70-min period, the STDs of wind direction and speed
using single-curve-fitting are 3.4◦ and 0.2 m/s, respectively, and
those for dual-curve-fitting are, respectively, 3.5◦ and 0.2 m/s.
Although the STDs are almost the same, the mean errors of
wind direction and speed have been improved by about 5.7◦

and 0.3 m/s during low sea states. The performances of the
single- and dual-curve-fitting techniques are almost the same
when the wind speed is higher than 4 m/s, under which con-
dition the clutter is strong in almost all azimuthal directions
[see Fig. 6(b) and (c)].

B. Original ILS Versus Modified ILS

Fig. 7 shows the results with and without island recogni-
tion from Dataset 4, during 17:46 to 18:46, Oct. 29, 2008,
which involves the period when ship approached and then left
the island from 17:56 to 18:16. The island was located in the
near range from 18:00 to 18:10 when the results using island
recognition show some improvement (the STDs of retrieved
wind direction and speed are reduced by about 7◦ and 0.3 m/s,
respectively, from those measured by the anemometer, as shown
in Table II). It may be observed that from 17:46 to 17:58 and
18:12 to 18:46, the wind results with island recognition are
exactly the same as those without island recognition. This is
because the island was located far from the ship during these
periods, and the intensity level selection algorithm itself can
withstand the island interference automatically. Also, it can be
seen that the results using the modified method are more stable
than those obtained using the original method.
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Fig. 6. Comparison of wind results from 01:12 to 05:31, November 29, 2008: (a) wind direction; (b) wind speed; (c) significant wave height and percentage of
directions with many low-intensity pixels; and (d) ship speed and ship direction.

Next, the modified ILS method above was applied to a longer
dataset of quality-controlled Furuno radar data and the results
were compared with the reference data measured by a ship-
borne anemometer (with the ship’s motion removed). Fig. 8
shows the comparison of the radar-retrieved wind velocities
obtained from the original and modified ILS-based methods
with the anemometer-measured results based on Dataset 2 col-
lected during the period from 12:09, Dec. 1 to 12:02, Dec. 4,
in 2008. It may be observed that the radar results from both
methods agree well with the anemometer data. However, the
results using the modified method are clearly more stable with
respect to the wind direction results even when more than half
of the image data are discarded due to blockage and low wind

speed from 06:30 to 07:30, Dec. 2 [see Fig. 8(a)]. From 00:30
to 06:00, Dec. 3, the low-clutter direction percentage is higher
than 90%, so those images are considered as low-backscatter
cases and are discarded. Moreover, influence of frequent ship
motion on the anemometer-measured results is observed at time
around 05:00 and 15:00, Dec. 3 in Fig. 8(a). The anemometer
winds appear more spiky than the radar results. From Fig. 8(d),
it can be seen that the ship motion changed significantly and
frequently. For all the Furuno data collected in December,
it is shown that the modified ILS-based method reduces the
mean differences and STDs between the radar and anemome-
ter results for wind direction and speed by about 3◦ and 4.9◦

and 0.5 and 0.2 m/s, respectively (see Table II).
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Fig. 7. Comparison results obtained from data (Dataset 4) with appearance of island: (a) wind direction and (b) wind speed.

Fig. 8. Comparison of Dataset 2 wind results using ILS and modified ILS from 12:09, Dec. 1 to 12:02, Dec. 4, in 2008: (a) wind direction; (b) wind speed;
(c) percentage of directions with many low-intensity pixels; and (d) ship speed and ship direction.

C. Dual-Curve-Fitting Versus Modified ILS

By comparing the wind parameter results obtained from
Dataset 1 using the modified ILS-based and dual-curve-fitting
algorithms with the anemometer data, it may be observed from
Fig. 9 that both algorithms can provide satisfactory results in
most cases. When the zero pixel percentage is lower than 10%
[see Fig. 9(d)] in this dataset, the data are classified as rain
cases. Rain was recognized during 02:10 to 05:40 and 08:10
to 13:30 on Nov. 27, 18:00 to 19:30 on Nov. 28, and 06:40 to
09:10 on Nov. 29, when the STDs and mean errors of wind
speed and direction between the reference data and the retrieved
wind results using both methods are larger than those obtained
under the rain-free condition. It was also found that when rain

interference exists, the modified ILS method seems more robust
than the dual-curve-fitting method for the data considered here.
For example, during 11:40 to 12:06, Nov. 29, the wind speed
by dual-curve-fitting is significantly overestimated due to rain,
while the result from the modified ILS method is satisfactory.
Similar conclusions can be made for the period of 08:00 to
10:00, Nov. 27. This may be because, based on our calibra-
tion model (see Fig. 2) for the curve-fitting method, a small
increase in intensity will cause a relative large increase in wind
speed when the speeds are within 13-20 m/s. However, the
ILS-based model looks less sensitive to intensity change over
that speed range. A better model with more training data at
high wind speeds may improve the wind results obtained from
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Fig. 9. Comparison results of (a) wind speed; (b) wind direction; (c) low-clutter direction percentage; (d) zero pixel percentage; and (e) ship information for
Dataset 1.

the curve-fitting-based method. On the other hand, dual-curve-
fitting shows superiority over the modified ILS method for wind
direction when the low-clutter direction percentage is high due
to low sea state [see the peak during 22:16, Nov. 28 to 01:13,
Nov. 29 in Fig. 9(c)]. The average execution times for pro-
cessing a set of 32 radar images using dual-curve-fitting and

the modified ILS algorithm are 6.001 and 21.919 s, respec-
tively, running in MATLAB on an i5-3450 CPU of 3.10 GHz.
On the other hand, the least time for collecting a set of 32
radar images is 48 s (for Dataset 2 or 4). Thus, it can be con-
cluded that the modified approaches may be executed in near
real time. The ILS-based algorithms take more time due to the
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interpolation which is implemented to standardize the image
size before temporal integration for our datasets. This procedure
is not required in the curve-fitting based algorithms.

VI. CONCLUSION

In this paper, two improved algorithms for wind retrieval
from shipborne X-band nautical radar images were proposed
and tested using radar and anemometer data collected on the
Canadian East Coast. Reference curve-fitting-based and ILS-
based algorithms perform satisfactorily. With the improved
dual-curve-fitting algorithm, the wind direction and speed mean
difference between the radar and anemometer results can be
reduced by about 5.7◦ and 0.3 m/s, respectively, under low sea
states. However, the results obtained from single- and dual-
curve-fitting are almost the same at higher sea states. It is
also shown that the modified ILS method (improved algorithm)
is more robust than the original ILS-based method (reference
algorithm), since the former can work well even when block-
ages or islands exist in the radar field of view. Although wind
speed results extracted from the modified ILS method are not
improved distinctly, the modified ILS method reduces the mean
differences and STD of wind direction between the radar and
the anemometer results significantly by about 3◦ and 4.9◦ in
Dataset 2. Moreover, the radar measurements from dual-curve-
fitting and the modified ILS agree with each other for most of
the data used here, and the mean difference and STD between
the anemometer data and the radar results observed using the
two methods for wind direction and speed are close. For the
data considered in this paper, the overall STDs for wind direc-
tion and speed are 6.6◦–21.2◦ and 0.5–2.0 m/s, respectively,
which are a little higher than the results (less than 17.4◦ for
direction and less than 1.1 m/s for speed) in open literatures
(e.g., [6]–[9], [22]). It should be noted that the temporally aver-
aged radar-derived wind results also represent spatial average
values within the radar coverage, while the temporally aver-
aged anemometer data represent point measurements at the ship
location. This may account for some of the difference between
the radar and anemometer results. In addition, correcting the
wind speed measurements for the atmospheric stability condi-
tion may improve the results [22]. However, this procedure is
not incorporated here since some necessary parameters for the
correction are not available.

A couple of limitations of the methods should be noted.
First, modeling of the curve-fitting-based approach is not
yet robust enough. Building proper models for wind speed
retrieval depends on several factors, such as the accuracy of
anemometer data. Second, rain recognition was not success-
ful for some datasets. A more intelligent way to identify
and eliminate the effects of rain is required. A threshold in
terms of signal-to-noise ratio instead of the gray scale inten-
sity may be used for rain recognition. Furthermore, images
in the presence of rain were discarded before wind speed
and direction were retrieved in previous work. Further efforts
are ongoing to design a method that may be used to recover
wind parameters by exploiting the differences between images
collected with and without rain. It would also be worth-
while to compare the performance of wind extraction from

the horizontally and vertically polarized radar data presented
in [23] and [24].
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