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ABSTRACT 

The multi-craft problem is defined as simulating the interactions of multiple objects 

floating on water. This encompasses the direct interactions between water and the object, 

and indirect interactions between objects that occur via the water. Existing solutions 

generally treat the floating objects as simple 3-dimensional volumes with properties, such 

as weight and buoyancy. For many practical situations, these objects need to be simulated 

by complex rules. The simulation of ships is a case in point. As realistic water simulation 

itself is computationally expensive, accommodating the added complexity due to floating 

objects can be a difficult task. The research presented in this thesis proposes a method for 

distributed water simulation where the scope of each participating simulation is chosen by 

the model that governs it. For the multi-craft problem, this means simulating the water in 

one node and simulating the floating objects in other nodes in a network. Details of two 

prototypes created as part of this research are presented to show its applicability for 

solving this problem and how implementation of such a scheme can be achieved. Its 

effects on modularity, performance, scalability and reliability are also illustrated. 
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Chapter 1: Introduction 

Solutions for water simulation, whether for scientific works [1], engineering 

problems [2], visual arts or computer games [3], sometimes focus on simulating water 

itself without accommodating the intricacies of floating object models. Solutions for 

interactive simulation exist [4-7] where water and floating objects affect each other, but 

the floating objects are mainly treated just as 3-dimensional volumes with properties, 

such as weight and buoyancy. For visual arts or games, complicated floating objects are 

sometimes animated, rather than simulated. Here simulation is defined as a process where 

the result is produced or observed over time based on some model, that only defines some 

characteristics or behavior, but the outcome is not fixed beforehand. This simplification 

of the floating object is generally beneficial because it frees the simulation to focus on 

realizing the water. 

However, for many practical situations, the floating objects are more than just 3D 

volumes, the rules that control them are complex and simplification of their model is not 

an option. The multi-craft simulation is the simulation of such situations where the system 

needs to accommodate complex floating object models and their interactions on water. 

For example, in a ship simulator, the laws that govern the control of the ship, the behavior 

of its engine, the characteristics of its propeller and the effects of all of these on the 

motion of the ship, can be intricate[4, 8]. Adding this much complexity to an already 

complex water simulation is a difficult task and the resulting computational requirement 

can become enormous. In order to reduce the simulation load some realism may have to 

be sacrificed, like accurate interactivity. 
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This is certainly the case for the kinds of multi-craft scenarios that this study is 

interested in. Multi-ship interactions, like an ice-breaking ship leading a supply ship or a 

lifeboat, effects of ship wake wash on ice-fields and other ships, are instances of complex 

multi-craft problems that are the motivations behind this research to seek a feasible 

solution. 

Figure 1-1 and 1-2 show two (2) examples of multi-craft scenarios. These kinds of 

simulations have great potential by using a virtual environment for marine personnel 

training, offshore emergency response training and evaluating effectiveness of operational 

procedures. 

 

 

 

Figure 1-1: Multi-Craft Scenario - Ice-breaking ship leading another ship 
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Figure 1-2: Multi-Craft Scenario - Using propeller wake wash to manage pack ice 

 

1.1 Dividing by Model 

This thesis presents a distributed simulation technique where the multi-craft 

simulation is divided into multiple interacting ones. The scope of each participating 

simulation is a design decision that can be chosen based on several factors. For example, 

in the multi-ship ocean simulation, if each ship has a distinct model, then the design can 

be to simulate each ship in an individual node and simulate the ocean in one node 

connected in a network. When ship and ice-field interaction is involved, we can choose to 

simulate the ice field as a whole on a single node and the ship and ocean on different 

nodes. In general, the idea is to divide the simulation into one water simulation and 

multiple networked floating object simulations. 

A direct benefit of this technique, in contrast to a distributed simulation where 

each floating object also computes the surrounding water, is that we do not have to 

synchronize between water bodies on different nodes. This synchronization process is 
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non-trivial and can prove to be a significant network overhead. This technique also retains 

the benefits of a distributed simulation, mainly modularity. Each participating simulator, 

like water and floating objects, can be as complex as needed without negatively affecting 

others. 

The goal of this thesis is to formulate this model-based distribution technique and 

demonstrate that such a method can be effective in solving the multi-craft problem. The 

main requirement is a system that provides real-time simulation of water with multiple 

objects having complex models. Another objective of is to observe MBD system 

performance and study the effect of network load on simulation throughput and design, 

identify, and implement system components of a general MBD system. This is done by 

creating two (2) prototype implementations based on this method. Chapter 3 and 4 details 

the implementation of these prototypes and discusses the findings. The next chapter 

(Chapter 2) provides background information regarding technologies used in this research 

such as communication architectures and water simulation algorithm, and draws an 

overall picture of the current advancements done in related fields. Finally, chapter 5 

concludes with a discussion of the contributions of this study and some future 

recommendations. 
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Chapter 2: Background 

This chapter provides background information regarding three (3) important 

technologies used in this research. They are: two communication platforms, a) Message 

Passing Interface, b) High Level Architecture, and c) an interactive water simulation 

algorithm, IWave. Additionally, this chapter discusses the works done in the related 

fields. 

2.1 Message Passing Interface 

The basic principle of message passing model is very simple. In the absence of 

global memory, it allows processes to communicate through explicit messages, like 

conversations between people [9]. Every message has a body and generally has tags for 

recipient(s) and sender’s addresses, and size of the body, attached with it. By waiting for 

messages, processes can also be synchronized. Figure 2-1 shows a high-level description 

of a message passing system. 

 

Figure 2-1: Message Passing Systems 

...

P2 Pn

Message Passing Interface

Communication Network

P1 P2 Pn
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Each node (P1 ... Pn) represents a different process and is connected to a 

communication network abstracted by Message Passing Interface (MPI). Nodes 

communicate with each other via links. Processes running on remote machines use 

external links and those running on the same machine use internal links. 

Implementations of this model differ in choices made on multiple factors, like, 

whether or not messages are guaranteed to be delivered, is the delivery reliable, in order, 

whether multicast and broadcast are supported and should the communication be 

synchronous or asynchronous. For this research an implementation of the popular 

Message Passing Interface (MPI-2) from Microsoft Corporation is used [10]. 

The Message Passing Interface (MPI) Standard is a specification for a message 

passing library [11]. It is established to provide portability, efficiency and flexibility in 

writing message passing programs. Every MPI implementation is required to provide a 

common set of methods and features to give vendor-independence to the programmer. 

However, the specification doesn’t force any constraint on ways to achieve them. This 

frees the vendors to create optimized implementations that properly utilize their hardware, 

and the developers won’t have to worry about that, as long as they follow the standards. 

Its structure is simple enough to easily incorporate in any application, yet robust and 

complete enough to provide for the most advanced cases of message passing needs, from 

synchronous and asynchronous point-to-point communication to derived data types, 

virtual topologies, operations for global computation, synchronization and data 

movement. Although MPI guarantees order, it does not guarantee fairness. The 

programmer is responsible for avoiding starvation. 
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This highly popular standard has gone through multiple revisions, and the latest 

version is MPI-3. It has bindings for all common languages, like C/C++, Java and Fortran 

2008. 

2.1.1 Important MPI Concepts 

MPI is a comprehensive specification providing support for a wide variety of 

message passing needs. The most important concepts of MPI, which are used in this 

research, are discussed here. 

I. Communicator: 

Communicator indicates a dynamic communication context for a group of 

processes. In MPI, data is moved from the address space of one process to the address 

space of another. It is important that a safe communication space is provided that 

guarantees unrelated messages are separate from each other. Communicators are a way to 

ensure that safety. There are two types of communicator. Intra-communicator is used for 

communication within a single group of processes. Inter-communicator is used for 

communication within two or more groups of processes. 

MPI provides a default communicator named MPI_COMM_WORLD. When 

MPI_Init() is called, this defines a single context encompassing all MPI processes. 

New communicators can be created from this defined one using MPI provided 

functionalities. 
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II. Group and Rank:  

Although communicator and group have different data types in MPI, namely, 

MPI_Comm and MPI_Group respectively, from a developer's perspective, there are only 

minor differences. They are both dynamic objects that can be created and destroyed in 

runtime. A group, in MPI, is an ordered set of processes. Each group is associated with a 

communicator. Similar to communicator, at initiation all processes belong to a single 

group that is associated with the default communicator MPI_COMM_WORLD. Groups help 

in organizing related processes and enable collective communication. 

Processes within a group are given a unique integer identification, which is used 

to distinguish between different processes, called rank. Ranks are zero (0) based and 

contiguous. Processes can be part of more than one group/communicator. In each group, 

they have different ranks. 

III. Communication Routines: 

MPI provides a rich set of point-to-point communication routines. They generally 

all take a common set of arguments: 

 

(1) data_start, count and data_type: Together they determine the location 

and size of the data involved in a particular communication request. The total 

length is calculated from the number of elements given by count and 

data_type. MPI supports all common data types, like integer, short, 

long, float, double, char and many more. The data_start indicates a 

buffer location in program space. 
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(2) sender: The rank of the sender process. 

(3) receiver: The rank of the receiver process. 

(4) tag: Programmer defined field to uniquely identify different messages between 

two processes. If unique identification is not necessary, then the wild card 

MPI_ANY_TAG can be used. 

(5) comm: The communicator of which both the sender and receiver are parts. 

 

The different types of communication functions supported by MPI can be divided 

into either 1. Blocking or 2. Non-Blocking communication. The blocking functions are of 

four (4) types: 

a) Normal  Send / Receive: 

The general MPI send / receive function (MPI_Send() and MPI_Recv()) 

blocks   until   the   underlying  data    buffer  is  free and  can  be safely overwritten. 

Upon return,  modifying the  data  buffer   will   not   affect   the   send  /  receive   

operation.  

For MPI_Recv(), if the sender in not known or if it is necessary to receive from 

any source, then the wildcard, MPI_ANY_SOURCE and MPI_ANY_TAG can be used for 

sender and tag inputs respectively. In this case, the status variable will contain, among 

other information, the identity of the sender of that particular message. 

 

 



10 

 

 

b) Buffered Send: 

In the case of normal send operation, the MPI implementation is free to adopt any 

strategy in ensuring buffer safety. The implementation may choose to either 1. Copy the 

data into temporary system buffer or 2. Wait for the corresponding receive operation to 

get posted. Buffered send (MPI_Bsend()) is a way to guarantee message buffering.  

c) Synchronous Send: 

This send operation (MPI_Ssend()) blocks until the corresponding receive 

operation has been posted, and the destination process has started to receive the data. 

d) Ready Send: 

MPI_Rsend(), differs from the normal send in terms of calling order, that it 

should only be called if the matching receive has already been posted. It is the 

responsibility of the programmer to ensure that. However, the blocking nature of ensuring 

the safety of the data buffer is the same. 

 

Non-blocking communication happens in two steps: 

Step 1: Initiation 

Non-blocking or asynchronous communication allows a process to initiate a 

communication request that returns almost immediately and then the process moves on to 

execute other operations. This allows the overlap of communication and computation and 

has possible performance benefits. The letter 'I' is used to indicate a non-blocking send / 

receive operation (MPI_Isend() and MPI_Irecv()). 
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These two functions have an addition output parameter, request_handle, that 

uniquely identifies a previously initiated communication request. 

 

Step 2: Completion 

After an asynchronous communication has started, it is unsafe to modify the data 

buffer until the MPI library is done using it.  It is the responsibility of the programmer to 

ensure that a buffer is safe to reuse. To facilitate that, MPI provides two types of routines. 

One is for testing the status of previously initiated communications 

(MPI_Test(request_handle)), which returns true if the operation identified by the 

request_handle is complete and false otherwise. The other type of routine is 

blocking in nature, that waits for the corresponding operation to complete 

(MPI_Wait(request_handle)). 

 

2.1.2 Process-to-Process Synchronization 

Synchronization is needed to force order of execution among parallel processes. 

MPI supports process-to-process synchronization in two (2) ways: 

I. Blocking Calls 

A process can wait for other processes by using blocking send / receive calls. The 

general MPI_Send() and MPI_Recv() is suitable for this purpose. The sender can 

make the receiver wait for a required period of time by delaying the send operation. 
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II. Barriers 

This is a collective communication routine provided by MPI that allows for a 

group of tasks to be synchronized at one point. MPI barrier function looks like this, 

MPI_Barrier(comm) 

A process calling this function will block until all processes from the associated 

group of the communicator, comm, have called it. Then it returns, and all processes are 

allowed to advance. 

 

Although not explicitly used for this research, MPI provides some other notable 

functionalities, such as support for virtual topology, ability to create derived data types, 

routines for global computation, broadcast, scatter and gather. For the most 

comprehensive information, the full MPI specification can be obtained from the official 

MPI forum [9]. 
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2.2 High Level Architecture 

High Level Architecture (HLA) is a standard for large scale distributed simulation 

systems that allows the creation of computer simulation out of component simulations. 

The participating component simulations can be geographically distributed. 

One important aspect of HLA is interoperability. By conforming to HLA 

specification, individual simulators can become interoperable with each other and can be 

combined to perform large-scale computations that are beyond the scope and power of a 

'single system - single program' environment. This interoperability allows the 

participating simulation to be written in different languages and run on different types of 

machines and operating systems [12]. 

Another beneficial aspect of HLA is reusability. Component simulators working 

together to achieve one particular outcome can be broken apart and re-purposed for other 

scenarios with little to no development overhead. 

HLA is the preferred standard for modern large-scale simulation needs [13]. This 

open standard was first developed by the Defense Modeling and Simulation Office 

(DMSO) of the US Department of Defense (DoD) and later adopted as an IEEE standard 

[12]. It has many implementations from different vendors and programming languages, 

both commercial and free. For this research two freely available HLA implementations 

were used. One is the Pitch pRTI Free from Pitch Technologies [14], and the other is the 

Portico RTI from the Portico Project [15]. 
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2.2.1 Important HLA Concepts 

Figure 2-2 illustrates the different component of a general HLA system. 

 

Figure 2-2: Conceptual Overview of HLA Systems 

 

I. Run Time Infrastructure (RTI) 

The RTI is a middleware that exposes the HLA specified services to simulation 

systems. This acts as a middle man between participating simulators. All direct 

communications happen between the RTI and a simulator, and it is the responsibility of 

the RTI to deliver the right data to the right receiver. To achieve this it provides all the 

necessary library and programming interfaces. HLA only defines the specification of 

these interfaces that frees the vendors to optimize their implementation as they see fit. For 

instance, the RTI itself can be distributed. This indirect communication between 

simulators has the possible benefit of making the system more resilient to failure, by 

allowing any participating simulator to crash or stop without shutting the whole 

simulation down. 
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II. Federate 

Component simulators are called federates in HLA. This is any HLA compliant 

program that communicates with the RTI. Federate - RTI communication happens via 

two objects called RTI Ambassador and Federate Ambassador. Any outgoing messages 

from the user application, e.g., updating values, are presented to the RTI Ambassador and 

any callbacks from the RTI, e.g., receiving updated values, are handled by the Federate 

Ambassador.  

III. Federation 

A set of interacting federates are said to be part of a federation. These related 

federates share a Federation Object Model (FOM, discussed later) which is also a part of 

the federation. 

IV. Federation Execution 

Federation Execution is a single session of actual operation of a federation 

designed for some particular task. Each run is termed as a different federation execution. 

a) Object Model Template (OMT) 

OMT is a template specification identifying the format of language that can be 

used to describe data exchanges between federates. HLA provides a common architecture 

for interacting federates. However, before the interaction can happen, joined federates 

need to know what kind of data or services will be available on run time. OMT is the 

common template that federates use to specify this information and it plays a major role 
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in ensuring interoperability and reusability. Federation Object Model (FOM) and 

Simulation Object Model (SOM) are two document types that use OMT. 

 

b) Federation Object Model (FOM) 

FOM is a document describing all data requirements at runtime of a federation as 

a whole in a common, standardized format. Each federation has a FOM associated with it. 

 

c) Simulation Object Model (SOM) 

SOM pertains to a single federate as opposed to the federation as a whole. It 

describes the type and characteristic of data or services provided by individual federates 

to the federation. 

The principal difference between FOM and SOM is that FOM focuses on inter-

federate information, and SOM focuses on a federate's internal information. Among other 

things, these object models have three (3) main components. They are object classes, 

interaction classes and data types. 

 

d) Object Classes 

Object classes represent abstracted objects, whose states persist over time. For 

example, a ship can be described as an object class in an ocean simulation. Similar to 

object-oriented design, they help encapsulate related information. Object classes have 

attributes associated with them whose values change during a federation execution. 

Possible attributes for a ship object can be position, heading, and speed. 
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e) Interaction Classes 

Interaction Classes generally represent an explicit action taken by a federate. As 

opposed to objects, interactions don't persist over time. Usually, they represent some 

discrete event, such as start, stop, and button press. Interactions may have parameters that 

convey more detail. The determination of what data should be classified as objects and 

what should be classified as interactions is not predefined and is left to the programmer. 

 

f) Data Types 

The attributes and parameters have specific data types associated with them. HLA 

provides many predefined data types of different bit sizes as well as complex data types 

like, records and arrays. In addition, HLA supports user defined data types that are 

particularly helpful in large-scale development. 

These object and interaction class definitions also contain information about the 

producers and consumers of these data. A federate who offers a particular type of data is 

said to be the publisher and the federate who is interested in that type of data is the 

subscriber. The data distribution service (discussed later) provided by HLA enables the 

RTI to correctly propagate the data between publisher and subscriber. 

2.2.2 HLA Services 

HLA provides a number of services that are implemented by the RTI. A federate 

receives these services by making calls to the RTI through specific interfaces. These 

services can be categorized into eight (8) basic groups shown in table 2-1. 
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Table 2-1: HLA Services 

Services Main Responsibilities 

Federation Management Creation, tracking and destruction of federations and 

federates, synchronization point management. 

Declaration Management 

(DM) 

Keeping track of which federates are publishers and / 

or subscribers of each classes of data. 

Object Management Object class registration / discovery, updating object 

attributes and communicating interactions. 

Ownership Management Allows transfer of ownership of registered object 

instances between federates. 

Time Management Coordinates logical time advancement and provides 

consistent, orderly delivery of time-stamped data. 

Data Distribution Management 

(DDM) 

Allows advance filtering for subscribers based on data 

values and data regions. 

Support Services RTI start-up and shutdown, querying handles for 

objects / interactions. 

Management Object Model 

(MOM) 

Allows federates to query information and control the 

operation of the RTI. 
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2.2.3 Federation Development 

A typical federate follows a common set of steps. Figure 2-3 shows the flow chart 

of a typical federate life-cycle. The HLAModule in both Prototype 1 and 2, developed 

using C++ and described in chapter 3 and 4 respectively, carry out these steps. 

 

Figure 2-3: Flow Chart of Typical Federate Life-Cycle 
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The full HLA specification is vast and beyond the scope of this research. The 

specification is divided into three (3) parts. Specification regarding federation and 

federate rules can be found on IEEE 1516 [12]. IEEE 1516.1 [16] contains details about 

HLA services, and comprehensive information about OMT can be obtained from IEEE 

1516.2 [17]. 

 

2.3 IWave Algorithm 

IWave is an interactive water simulation algorithm developed by Tessendorf [18]. 

This algorithm provides a method of water simulation that is different from the more 

traditional Fast Fourier Transform (FFT) approach [19], where visually realistic water 

interactivity is difficult to obtain without loss of frame-rate. IWave’s high performance is 

attributed to its ability to achieve interactivity through only 2D calculation on a grid, 

where a general fluid simulation requires 3D processing. This algorithm supports objects 

of any shape that can create disturbances on the water surface, such as ripple, wake, and 

wave reflection. The second prototype developed for this research, discussed in chapter 4, 

uses this algorithm for water simulation. The implementation of this method can be found 

within the source code of that prototype in the Supplementary Files. This section 

summarizes the formation and key elements of the algorithm that is used in the 

implementation and presents the pseudo code. 
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2.3.1 Linearized Bernoulli’s Equation 

The IWave procedure is based on the linearized Bernoulli’s equation on a 2-

dimensional grid of this form, 

 
��ℎ��, �, �	��� + � �ℎ��, �, �	�� = −��−∇�ℎ��, �, �	 (1) 

Here,  

ℎ��, �, �	 is the height of the water surface at position ��, �	 on the grid at time �, 

�����,�,�	���  represents the vertical acceleration of the wave, 

� ����,�,�	��  is a velocity damping term where � is a constant, 

� is the acceleration due to gravity and 

√−∇� , defined below, is an operation that conserves the total water mass, i.e., 

when the height of one point of the surface rises, height of nearby regions drops. 

The time derivative in equation (1) can be written as a finite difference. But before 

that we need to calculate the vertical derivative √−∇�. 

√−∇� can be written as a linear operator, 

 �−∇�≡ �− ��
��� − ��

��� (2) 

Implemented as a convolution on a height grid it becomes, 

 �−∇�ℎ��, �	 = � � ���, �	ℎ�� + �, � + �	�
� !�

�
" !�

 (3) 
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Here, 

���, �	 is an element of the convolution kernel. The kernel is a 2-dimensional 

square with size �2$ + 1	 × �2$ + 1	. According to Tessendorf (2004), $ = 6 is a good 

value to provide realistic wave propagation with acceptable computation time. With $ =
6 the size of the kernel becomes 169 �= 13 × 13	 elements. The equation for ���, �	 is, 

 ���, �	 = ∑ ,-�.!/0� 12�,-√�� + ��	- �23 , 4ℎ.5. 1 ≤ 7 ≤ 10000 (4) 

Where, 

�2 = ∑ ,-�.!/0�- , is used to scale the center value to one (��0,0	 = 1	, 

,- = 7 × 0.001, 

12��	 is the Bessel function, which is available in C++ standard math library. 

 

This kernel has two important properties, 

a) The kernel values do not change throughout the simulation, so they can be 

calculated and stored in a 2-dimensional array at initialization.  

b) The kernel values are laid symmetrically. Specifically: 

���, �	 = ���, �	 :7; 

���, �	 =  ��− �, −�	 =  ���, −�	 =  ��− �, �	 

This leads to an optimization of equation (3) to reduce the number of 

multiplications needed. 
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�−∇�ℎ��, �	 = ℎ��, �	
+ � � ���, �	�ℎ�� + �, � + �	�

� "<�
�

" 2+ ℎ�� − �, � − �	 + ℎ�� + �, � − �	+ ℎ�� − �, � + �		 

(5) 

Now that we have all the elements, we can convert equation (1) into a finite 

difference resulting in, 

 

ℎ��, �, � + ∆�	
= �ℎ��, �, �	 × �2 − �∆�	 − ℎ��, �, � − ∆�	 − √−∇�ℎ��, �, �	 × �∆��	1 + �∆�  

(6) 

2.3.2 Energy Source 

IWave algorithm supports wave generating sources by simply an addition 

operation at the beginning of each simulation loop.  

 ℎ��, �, �	+= >��, �, �	 (7) 

 

Here, The source grid, >��, �, �	 is the amount of relative force at position ��, �	 at time �. 

This can be negative, positive or zero. Zero denotes no additional disturbance, and 

negative / positive values can be used to push or pull the wave surface at that location. 

>��, �	 should be reduced over time if a constant force is not desired. 
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2.3.3 Obstruction 

In IWave, obstructions are defined in a 2-dimensional grid, ?��, �	 of the same 

size as the water surface grid. In this grid, a 0 represents presence of an obstruction and 1 

denotes absence of any. At the boundary of the obstructions the values 0 < ?��, �	 < 1 

are used to create an anti-aliasing effect. To get interaction between water and obstruction 

(e.g. reflection) we just have to use a multiplication operation: 

 ℎ��, �	 ∗= ?��, �	 (8) 

2.3.4 Wake 

A movement of a floating object is simulated by updating the obstruction grid as 

the object moves, by putting 0 (or > 0 :7; < 1 in case of boundary) where it arrives and 

putting 1 at locations where it no longer exists. To enable wake, we also need to update 

the source grid in accordance with the current position of the object using this equation, 

 >��, �	 = 1 − ?��, �	 (9) 

 

If the obstruction has an anti-aliased boundary, updating the source this way 

produces wake when the obstruction moves. In this method, the subsurface shape of an 

object does not affect the produced wake and if two obstructions have the same area on 

the ‘obstruction grid’ they produce the same wake. This simplification of achieving 

water-object interactivity by 2-D computation alone contributed to faster prototyping and 

analysis of the proposed system. 
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2.3.5 Pseudo Code 

01 // Initialization 
02 ----------------- 
03 Populate Convolution kernel (equation (4)) 
04  
05  
06 // Simulation loop --- START 
07 ---------------------------- 
08  
09 Update source and obstruction according to the scenario status and    
   objects' positions 
 
10 // Incorporate source and obstruction into height  
11 h(x,y)+=s(x,y) 
12 h(x,y)*=o(x,y) 
13  
14 Update vertical derivative (equation (5)) 
15  
16 Calculate new height (equation (6)) 
17  
18 // Simulation loop --- END 
19 ---------------------------- 
 
 
 

2.4 Related Works 

The previous three (3) sections in this chapter offer background information about 

existing technologies and research that the current study directly utilizes. This section 

discusses related works that do not directly contribute to the present research, but 

collectively provide an overall picture of the recent advancements made in relevant fields 

and informs us about best practices. One such area is fluid simulation, which has been an 

active research area for many years [20, 21]. In recent times, the advances in Graphics 

Processing Units and their applicability in parallel computing have encouraged several 

researchers to use GPUs for such simulations [22]. In addition to optimization in fluid 

simulation, the multi-craft problem can be related to multiple domains of research, most 

notably, the simulation of interaction between water and rigid bodies, and simulation of 
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floating objects with physically based, complex models. Below is a discussion of some 

recent advancements in each of these areas. 

2.4.1 GPU Optimization 

Modern Graphics Processing Units are efficient at computing a large amount of 

data in a parallel fashion, mainly in the context of visual rendering and image processing. 

It is the advent of the programmable shaders and floating point support that enabled 

GPUs to be used in general purpose computing and not just in the graphical rendering 

domain. Unlike CPUs, which have a limited number of cores and a limited number of 

threads that they can simultaneously support, GPU core and thread counts typically range 

in the thousands [23]. This gives GPUs a clear advantage for executing a common set of 

instructions on different elements of a large data set in parallel. Offloading data parallel 

compute intensive works to GPU can result in magnificent speedups [24] that, otherwise, 

would not be possible by CPU optimization alone. Because of this, many researchers 

have worked on optimizing fluid simulation by harnessing the power of GPU. Although 

the Navier-Stokes equations are known for accurately predicting motion of viscous fluids, 

the lack of a closed-form solution [25] has led to various techniques of approximating 

them. Among the multitude of fluid simulation methods, some of the popular techniques 

that have been subjected to GPU optimization are: a. Smoothed Particle Hydrodynamics 

(SPH), b. Lattice Boltzmann Method (LBM), and c. Eulerian grid-based method. 

Smoothed Particle Hydrodynamics (SPH) [26] is a Lagrangian method that is 

used to simulate fluid like motion in computer graphics by discretizing the liquid volume 

into a set of particles that represent mass, and have properties such as position and 
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velocity. A “smoothing kernel function” evaluates these properties for each particle using 

information from neighboring particles. This method is inherently parallel, comparatively 

less data dependent, allows for large time steps, and provides simpler mechanism for 

conservation of mass, which makes it easier to be real time than the computation of 

Navier-Stokes equations [26]. Taking these benefits into consideration, Wu et al. [27] 

have implemented the SPH method completely on GPU programmable shader.  

In [27], they proposed a new method that starts by grouping the grid node based 

on normal direction of the obstacle surface. From there, two fragment shaders are used to 

calculate the pressure and velocities around obstacle surfaces for static and dynamic 

obstacles, as well as for surfaces with and without drag. The experimental results 

presented show that this method allows arbitrary user defined boundary conditions. By 

utilizing the fragment shader instead of vertex shader, which provides higher parallelism 

due to having more pipelines, they improved the computational performance within GPU. 

To reduce the number of rendering passes, they combined the particle properties, 

such as velocity, density, and temperature, directly into a single RGBA-4 channel, which 

allows the fragment shader to compute all of them together in one pass. Moreover, they 

have found that Jacobi Iteration for solving systems of linear equations is comparatively 

better suited for parallelization. Experimental data showed that their GPU optimization, 

using GeForce FX5950 Ultra with 8 fragment pipeline, achieved a significant speedup of 

about 14 (fourteen) times over CPU implementation. 

Instead of using just one GPU, Zhang et al. [28] have shown that a multi-GPU 

configuration can produce even better performance. Like the study done by Wu et al. 

[27], the method used by Zhang et al. is also based on SPH. However, they use a 
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“modified Tait equation” instead of traditional ideal gas equation to avoid “high 

compressibility and implausible simulation results,” and the neighborhood search in SPH 

is optimized by an index sort that reduces GPU memory overhead and searching time by 

utilizing parallelization provided by the Nvidia CUDA architecture.  

The use of multiple GPUs, four (4) in this case, presents new problems in terms of 

load balancing, because data transfer between GPUs is a major bottleneck. To alleviate 

this, they have used a dynamic and distributed load balancing scheme, where the 

simulation domain is split into slices based on particle count and computation time, and 

each participating GPU is responsible for some consecutive slices. Time cost of particle 

data exchange is reduced by storing them according to slice structure, and in each step, 

based on the knowledge of the previous time steps, particles are selected for exchange 

between GPUs to reduce data transfer and ensure efficient load distribution in the future. 

Furthermore, cost of data exchange between GPUs are reduced by parallelizing 

calculation and data exchange. The experimental results presented in section 6 of their 

paper showed that the multi-GPU configuration can achieve a speedup of up to three (3) 

times compared to a single GPU system. 

The Lattice Boltzmann Method [29] is another approach for fluid simulation that 

is particularly useful for handling boundary conditions and solid-fluid interfaces, because 

it can model both the microscopic (individual particles) and mesoscopic (probabilistic 

interaction of a group of particles) behavior. Although, it suffers from poor scalability and 

restrictive time steps, it benefits from the simplicity of the parallelization of its algorithm, 

making it suitable for GPU optimization. A recent study done by Rinaldi et al. [30] 

successfully implemented the LBM method on GPU using Nvidia’s CUDA architecture. 
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Their work greatly benefits from the Coalesced Memory Access technique supported by 

the CUDA programming model (version 3.2), where a group of 16 threads (called, half-

warp) can get global memory data together, in a single access, and store them in the 

shared memory. This technique reduces execution time by reducing global memory 

accesses, which is generally about 100 times slower than shared memory. After copying 

the global memory data, their algorithm does all calculations in the shared memory and 

finally writes the results back to the global memory. Coalesced Memory Access, together 

with their proposed “reversed advection-collision scheme,” allowed them to implement 

the LBM method as a single step, instead of the traditional two-step algorithm [31].  

One important issue that minimizes the advantages of coalesced access is the 

effect of code branching from conditional statements. Branches can make threads of the 

same group to diverge, forcing serialization and increasing the total number of operations, 

which especially affects the boundary cell calculation. To minimize branching effects, 

instead of having a lot of codes on each branch, they use “shifting indexes” that are 

dependent upon the boundary condition, to allow the same code to be run on each cell. 

Performance comparison of their implementation of the algorithm, using NVIDIA GTX 

260 with 192 steam processors, simulating fluid flow in a lid driven cavity shows about 

130 times speedup compared to CPU based implementation.  

The Eulerian method of fluid simulation is discussed in the next section about 

Interactive Water Simulation. 
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2.4.2 Interactive Water Simulation 

Interactive water simulation allows floating objects to interact with the water 

surface, creating ripples and wakes from the objects' movement, and position / orientation 

changes on the objects from forces such as waves, currents, buoyancy, and gravity. This 

is a complex problem, and achieving realistic interaction can be challenging. The 

intricacy of the geometric shape of the floating objects adds to that. One way to handle 

complex geometric objects and to generalize them is to think of them as being made up of 

much smaller and simpler shapes put together. A recent method for interactive water 

simulation based on SPH, developed by Ricardo da Silva Junior et al. [32], uses a 

“modified version of the depth peeling” [33] algorithm to discretize both the simulated 

fluid volume and rigid bodies into sphere shaped particles. This discretization is done at 

the initialization state. The radii of the particles are chosen according to the resolution 

requirement of a particular simulation run. All fluid particles get a fixed radii, and all 

rigid body particles get a separate, but also fixed, radii, which greatly simplifies collision 

testing at runtime. For fast searching and computation of particles, their method uses 

different hash tables for fluid, dynamic rigid and static rigid particles, and uses a mapping 

function to correlate their positions from one hash table to another.  

The main contribution of [32] is a collision detection method that utilizes a 

heterogeneous architecture of Multi-core CPU and GPU. In their method, the collision 

detection step is divided into two phases: a. Broad Phase and b. Narrow Phase. “Broad 

Phase” is where a Multi-core CPU is used to do computationally simplistic collision 

testing using only 3-D bounding boxes, instead of particles. This phase identifies the 
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subset of particles that have a non-zero collision probability, and all other particles are 

filtered out, and do not play any role in the next phase of the calculation. In “Narrow 

Phase,” an accurate, computationally expensive, and parallelized collision detection is 

done on GPU using CUDA architecture. Only the particles selected in the Broad Phase 

are considered, which increases performance significantly, because typically the 

percentage of particles that have a possibility of colliding is small compared to the total 

particle pool. After the Narrow Phase, particles that are positively identified as colliding 

go through “collision resolution and resultant force / torque integration.” The study 

showed that the optimized collision detection using heterogeneous architecture is much 

faster (about 7 times) than GPU-bound systems alone, and can provide visually realistic 

rigid-fluid interaction.  

An important caveat for SPH based methods discussed above, is that creating 

smooth liquid surfaces can be difficult. In the Eulerian Grid-Based Method, achieving 

smooth surface representation is relatively easy. In this method, instead of treating the 

fluid as a large number of particles, fluid properties, such as densities and velocities, are 

calculated as a field for the whole simulation region [34]. The tradeoff is poor scalability. 

This is because as the simulated region grows, the computation time grows exponentially. 

A technique proposed by Cohen et al. [35] tries to alleviate this shortcoming by dividing 

the simulation domain into two regions for each rigid body. The “near-field region” is 

centered on the object of interest, and fluid inside this region is governed by the velocity 

field calculated by Eulerian method, providing high fidelity. If the object moves, this 

region moves with it. Beyond this lies the “far-field region,” where fluid motion is 

governed by particles following simple Newtonian dynamics with gravity, momentum, 
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drag. Their study showed that, in practical implementation, the boundary between the 

near-field and far-field regions is not visually discernable. By effectively restricting the 

computationally expensive Eulerian method inside a certain region instead of using an 

enormous simulation grid for the whole rendered area, and using GPU optimization, they 

were able to achieve realistic rigid-fluid interactivity with superior visualization, within 

real-time performance.  

A similar approach of using high-fidelity fluid simulation only near the surface of 

the water to capture detailed fluid motion, and a crude estimation of water volume far 

away, is also adopted by Chentanez et al. [36]. However, their implementation uses “tall 

cells to generalize a height field underneath the water surface” that approximates the 

overall fluid volume. On top of it lies 3-Dimensional grids of cubic cells, that are 

governed by Eulerian grid based method to produce accurate velocity and pressure fields.  

Rigid-fluid interaction is achieved by incorporating “solid fractions” [37] in the 

pressure equation, which denote the percentage of a cell covered by any solid. Effects of 

object movement are transferred to the water surface of these cells by the “blending of 

solid and fluid velocities” based on the corresponding solid fraction. Conversely, objects' 

positions and orientations are updated from combining all forces and torques resulting 

from buoyancy, drag, and gravity. Buoyancy and drag calculations depend on the solid 

fraction of the cells, and relative density and relative velocity of the solid and fluid. The 

study presents multiple large-scale scenarios having two-way rigid-fluid coupling 

achieving a speedup of up to 14 times compared to previous studies. 

The work in this thesis uses an interactive water simulation technique developed 

by Tessendorf [18]. The main benefit of this technique is achieving water-object 
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interactivity by 2-Dimentional computation alone, unlike the works presented above that 

primarily focus on 3-D calculation. This greatly simplified development and allowed 

faster prototype development. A detailed discussion of this technique is presented in 

section 2.3 IWave Algorithm. 

2.4.3 Modeling Intricate Floating Object 

Intricate floating objects are not just rigid bodies. They are controlled by non-

trivial laws and exhibit complex behaviors. Studies involving them give us insights into 

the extent of complexity a floating object can possess. These can be the simulation of 

ships, lifeboats, and ice-fields, for example. Any kind of marine vehicle simulation itself 

is a broad topic, containing rules that govern its controls, models of various types of 

engine behaviors, effects of propeller and rudder on its motion and so on.  

Ueng et al. [8] have discussed a computation model for ship motion that allows 

the user to adjust the characteristics of the ship, such as, its size, engine power, and 

rudder, and environmental elements, such as, frequencies, amplitudes and directions of 

wave, current and winds, and observe its behavior. The model supports 6 (six) degrees of 

motion of the ship, which are computed separately using Newtonian dynamics, and then 

superimposed to generate the overall ship motion. Heave, pitch and roll are calculated 

using the wave heights sampled from a grid around the ship, where heave depends on the 

average height field, and pitch and roll are based on the differences of height fields 

between the top and bottom half, and left and right half of the grid, respectively. Surge 

and yaw are modeled using the engine power and rudder position, and sway is the result 

of current and wind. Drag forces and gravity are also included in the calculations. The 



34 

 

 

simulation output presented showed that the model produces visually realistic results for 

different kinds of ship and weather conditions. 

A more advanced study to model the ship-ice interaction is done by Lubbad et al. 

[38]. Their numerical solution classifies ice floes that come into contact with the ship's 

hull, based on “comparison between the lateral area of the floe and its thickness squared.” 

Floes having larger lateral area are considered breakable and selected for further 

processing. All other floes, including those that did not collide with the ship's hull are 

flagged as unbreakable. Breakable ice floes can produce new, smaller floes depending on 

the amount of stress they are subjected to. These stresses are calculated using the “theory 

of Semi-Infinite Wedge-Shaped Beams on Elastic Foundation,” and if above critical 

level, produces cracking pattern and ultimately new floes. Lubbad et al. also introduced 

GPU optimization to the process by using PhysX, which is a physics engine middle-ware 

that can accelerate the calculation of contact detection, resolution and force calculation 

for thousands of solids using the CUDA architecture on supported GPUs. 

A study that utilizes distributed simulation using High Level Architecture is done 

by McTaggart et al. [39] to simulate ship Replenishment At Sea (RAS). Using multiple 

participating simulators (federates) to compute the physics based modeling of 

replenishment gear (such as evaluation of cable tension and payload location) as well as 

motion and helm of the supply and receiving ship, they are able to determine whether 

undesirable events such as replenishment gear malfunction and payload immersion in 

water would occur during operation. Their simulation includes accurate mathematical 

model for wave induced ship motion and RAS equipment. Although hydrodynamic 

interaction between two ships in close proximity during Replenishment At Sea (RAS) 
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operation is not considered. Another research based on High Level Architecture is the 

Virtual Ships VS STANAG [40], which is a simulation architecture developed by the 

NATO Naval Armaments Group NG6. In addition to HLA specification [40] also 

provides specifications for virtual ship rules, development process, repository, 

organization and management. The primary goal of this architecture is to allow multi-

national re-use and interoperability of simulation of ship and maritime acquisition. 

More recently Bastin et al. [41] have shown that ice management can be done 

using propeller wake wash, and also used PhysX to solve the Newtonian dynamics of the 

ice floes. The numerical model presented produces a velocity field initiating at the 

propeller, which depends on the propeller diameter, speed, and thrust coefficient. GPU 

implementation using PhysX enabled the simulation to handle scenarios involving 

hundreds of ice floes. 
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Chapter 3: Prototype 1: Towing Simulation 

3.1 Objectives 

The main objective of this prototype is the study and understanding of different 

communication architecture that could be applicable in a multi-craft scenario. For this, a 

simplified version of the multi-craft problem is selected for development, where a car is 

dragging a dead weight using a rope or chain. 

 

Figure 3-1: Towing Simulation 

In this scenario, the rope is analogous to water, and the car and load are analogous 

to floating objects. Two versions of this prototype were implemented for two different 

communication architectures. Version 1 uses the Message Passing Interface (MPI), and 

version 2 uses the High Level Architecture (HLA). The information gathered for this 

prototype regarding MPI and HLA is consolidated in section 2.1 Message Passing 

Interface (MPI) and in section 2.2 High Level Architecture (HLA), respectively. This 

chapter provides the system analysis and discusses the output observations. 

The full source code of this prototype is included in the Supplementary Files. 
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3.2 System Analysis 

To test the selected communication architecture the system is divided into three 

separate but interacting processes. These three processes simulate a car, a rope and a 

weight respectively. Each process has its own class (car, rope and load) with its own 

physics logic, update and rendering cycles. The underlying communication layer enables 

them to pass event information to each other. The car and load only directly communicate 

with the rope process and not with each other, and events get acted upon whenever they 

are seen (received through inter-process communication), not when they are actually 

generated in the producing process. Each process runs on a pre-fixed 30 cycles per second 

frame-rate and in each cycle they first attempt to communicate with each other if 

necessary, then update their internal status, and lastly perform a rendering of themselves. 

To keep an emphasis on the experimentation of MPI and HLA, the physics that 

govern each of these processes are chosen to be simple, but not too much so that it can 

generate enough events to test the behaviors of the communication layers. For the same 

reason, the GUI was also kept minimal: instead of 3D, 2D rendering was used and each 

process has its own separate rendering window. This is because combining rendering 

information from multiple processes to show on a single window is non-trivial and would 

have taken a significant development time without adding much to the main objective of 

this research. 

3.2.1 Car and Load Simulator 

The physics of the car and load are similar in that they both have mass and 

produce acceleration or deceleration depending upon whether an external force is acting 
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upon them or just drag, using the equation C = D:, where F is force, m is mass, and a is 

acceleration. This acceleration (or deceleration) is used in calculating the velocity �E =
F + :�	 and displacement �> = F� + G�  :��	 in each iteration, where t is time, v is 

velocity after time t, s is the distance traveled in time t, and u is the start velocity. 

Displacement is used to determine the rotation of the wheels to give the feeling of a 

moving vehicle. So the rotation of the wheels is proportional to the forces acting on the 

vehicles. The only difference is that the car has an engine that can produce force, where 

the load has none. In both cases, whenever no force is present, drag makes them stop 

eventually. 

3.2.2 Rope Simulator 

The rope is a long semi-rigid body (not spring) with a defined length. Whenever 

its current length is less than this maximum, it acts as if nothing is attached with its 

endpoints and from the car’s point of view, it is free to move on its own forces. However, 

when it reaches its maximum length, it acts to transfer force and mass. At that point, the 

car sees the presence of the load and must divide its engine’s force between them. 

3.2.3 Information Flow 

Since all three components are simulated in three different processes, all events 

must be transferred through inter-process communication. Figure 3-2 shows the 

conceptual communication diagram of this system. 
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Figure 3-2: Prototype 1 Communication Diagram 

 

 

There are a total of four (4) types of communication requirements. 

I. Displacement events 

On each iteration, whenever the car and the load are moving, and they transfer 

their displacement values to the rope. Both car and load avoid sending zero displacement 

events. Upon receiving the data the rope updates its respective endpoints position and 

checks to see whether or not maximum length is reached. 

II. Mass Values 

Whenever the rope reaches its maximum length, it transfers the mass of the load 

to the car, which it acquires at the beginning of the program (it assumes that the mass of 

the load doesn’t change over time). Up until now, the car saw an additional mass of zero 

units, but now it receives a non-zero value and calculates the force that should act upon 

 

: Car

: Rope

: Load

1a : sendDisplacement()
1b : sendDisplacement()

2 : updateEndpoints()

3 : updateLoadMass(mass)

4 : updateForceOnLoad(F)
5 : updateForce(F)



40 

 

 

that mass (and sends it to the rope), as a result the net force acting upon itself reduces and 

the car experiences deceleration. 

III. Forces 

Upon receiving force information from the car the rope transfers that to the load, 

the load then updates its velocity and displacement. And all this time, displacement 

events from both the car and load keep the rope’s endpoints updated. 

IV. Synchronous vs. Asynchronous 

As it can be seen, the rope has to communicate with both of the other processes. 

To avoid blocking and unresponsiveness, Asynchronous Message Passing is used 

throughout the execution of the programs. This allows the rope to converse 

simultaneously with both the car and the load. 

 

3.3 Implementation 

3.3.1 Version 1 : Message Passing Interface 

For Microsoft Windows®, the stable implementation of MPI is 1.0.3 that 

implements MPI-2 [10]. The development utilizes the asynchronous send / receive 

functions MPI_Isend() and MPI_Irecv(). For testing the status of these operations 

the corresponding MPI_Test() function is used. All three processes are single 

threaded. Data transferring, simulating and checking for transfer successes are done in 

one sequential loop. Additionally, all communications are direct, from one specific 
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process to another, unlike what we will see in the HLA implementation where 

communication is indirect and happens via the Run Time Infrastructure. The figure below 

shows the graphical output of the MPI version of the prototype. Here, each window 

represents a separate process. 

 

 

(a) Car                                                                            (b) Rope 

 

 

(c) Load 

Figure 3-3: Prototype 1 (MPI) Graphical Output 



42 

 

 

3.3.2 Version 2 : High Level Architecture 

I. FOM 

The FOM for the HLA implementation defines two (2) object classes and two (2) 

interaction classes. Table 3-1 shows the publish / subscribe matrix of object classes and 

table 3-2 lists the interaction classes. 

 

Table 3-1: Prototype 1 - Object Classes - Publish / Subscribe Matrix 

Object 

Class 
Attributes Data Type 

Update 

Type 
Publisher Subscriber 

Car PositionX HLAfloat64BE 
On 

Change 
Car 

RoapAnd 

Load 

Car TransferredForce HLAfloat64BE 
On 

Change 
Car 

RoapAnd 

Load 

RopeAnd

Load 
LoadMass HLAfloat64BE Static 

RoapAnd 

Load 
Car 

 

 

Table 3-2: Prototype 1 - Interaction Classes - Publish / Subscribe Matrix 

Interaction Class Order Publisher Subscriber 

AtMaxLength Receive RoapAndLoad Car 

BelowMaxLength Receive RoapAndLoad Car 
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The HLA version had to combine the rope and load processes into one 

"RopeAndLoad" process due to the limitation of the RTI (discussed later) used at the 

time. Because of the 1D nature of the output the car and load could only move in one 

axis, thus the PositionX is a single 64 bit float. All data is communicated on change 

by the RTI except the LoadMass, which does not change throughout federation 

execution and simply needs to be communicated once, at initialization. 

The two interaction classes denote the two states of the rope: a) when it is fully 

stretched and b) when it is loose. As described previously, the Car process needs this 

information to determine when to exert force on the load. Since they are events and do 

not contain persistent information, they are represented by interactions. 

II. HLAModule 

The implementation of the federate ambassador class HLAModule follows the 

steps discussed in the 2.2.3 Federate Development section. 

III. RTI 

This implementation used an RTI provided by Pitch Technologies, pRTI Free 

[14]. Unfortunately, it is restricted to support only two federates. This is why the rope and 

load simulator had to be combined into one. Prototype 2 replaces this with another RTI 

from Portico project [15] that does not have this restriction. 
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Figure 3-4 below shows the graphical output of the HLA version of this prototype. 

 

 

(a) Car 

 

 

(b) RoadAndLoad 

Figure 3-4: Prototype 1 (HLA) Graphical Output 
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3.3.3 Class Diagram 

Figure 3-5 to 3-7 shows the class diagram of this prototype. 

 

Figure 3-5: Prototype 1 Class Diagram - MPI Version 
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Figure 3-6: Prototype 1 Class Diagram - HLA Version - Car Federate 
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Figure 3-7: Prototype 1 Class Diagram - HLA Version - RoapAndLoad Federate 
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3.4 Observation 

Initially, without the optimizations mentioned in the next section, the system was 

very jittery and quickly fell out of sync and frame rate ware below 30 frame per second. 

Messages were queuing up rapidly and were getting transferred late from when they were 

originated. This produced undesirable behaviors like the load acting as if the car is 

running even when it has stopped, the rope’s length exceeding the maximum allowed 

length and rendering FPS of the scenes falling below real-time requirements of 30 frames 

per second. After the optimizations, the system could maintain process to process sync 

and real-time responsiveness, although the rope showed oscillation effect at the maximum 

length point. This is because the car kept advancing while the force information could get 

transferred to the load, and the load could update its status and catch up. A more powerful 

PC, real networked deployment, smaller calculation / time step could improve the 

oscillation, but improvement in time synchronization is needed to suppress this totally. 

 

3.4.1 Optimization 

The initial execution of the system made it apparent that further optimization had 

to be done to achieve acceptable performance. The first optimization was to reduce the 

frame rate. Initially, all three processes were set to run at about 60 frames per second. 

This corresponded to a communication load of up to 180 attempts per second on the 

underlying communication layer. Reducing this to 30 frames per second per process made 

the situation much more manageable. 

dpeters
Highlight Text
ware
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The second, and most effective, performance improvement came from optimizing 

the code to require less frequent communications. Initially, all events were allowed to 

pass, but careful changes in the code to enable only modifications in values to be 

transferred made a noticeable difference. For instance, instead of passing on the force 

value at every iteration, it was made to transfer only on a change. The receiving party 

always worked with the most-recent value. With these improvements the system 

maintained a 30 frame per second performance. 

 

3.4.2 HLA vs MPI 

Although the comparison between HLA and MPI has appeared in literature before 

[42], in light of this implementation, several differences between these two architectures 

that are in favor of HLA, have become apparent. While the implementations did not show 

any observable performance difference between the two architecture, listed below are 

three (3) important differences that are related to this research.  

I. Separation of Communication & Application Layer : 

Although it is possible to design MPI systems manually that separate these two 

layers, HLA provides this separation inherently. The FOM and the federate ambassador 

implementation (in this case, the HLAModule Class) force a partition between the 

communication logic and the application logic. This allows the reusability of the 

communication layer that the second prototype, discussed in the next chapter, takes 

advantage of. It re-uses the HLAModule and part of the FOM from the towing simulator 

with little modification. 
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II. Data Distribution 

Where MPI communication is primarily direct and point-to-point, HLA supports 

data distribution. This means, in MPI, if several processes need certain information, the 

provider generally has to be aware of that and send the data accordingly. However, in 

HLA, the RTI provides advance data distribution, where the producer can just send the 

data to RTI, and the RTI will take care of the responsibility of transferring that data to all 

interested parties. This makes the development of the participating simulator abstracted 

from each other. 

III. Time Management 

Although not directly used in this research, HLA provided advanced time 

management functionality that makes it suitable for possible future improvements that 

can be done to this research. 

3.5 Conclusion from Prototype 1 

The knowledge gathered in developing this prototype is the basis for the next 

phase of the research. Primarily, it provides important understanding about two popular 

communication paradigms, the MPI and the HLA. After considering the differences 

between them, HLA was selected to be the suitable candidate to handle the 

communication needs of the second prototype. This also makes it possible to identify the 

reusable components of the multi-craft system, specifically the FOM and HLAModule 

class of the HLA implementation. In the next chapter, the development of prototype 2 is 

presented, which is directly related to the multi-craft problem. 
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Chapter 4: Prototype 2 : Multi-Craft Water Simulation 

4.1 Objectives 

Compared to the first prototype, prototype 2 was designed to be more 

sophisticated. It is directly related to Model Based Division (MBD) of the multi-craft 

problem in the ocean environment. Therefore, the main objective is to prove the 

applicability of model based division in solving the multi-craft problem. To do this, there 

should be a water simulator and multiple floating object simulators. Each simulator has 

individual computing resources and simulates only its corresponding model. Interactivity 

is achieved by inter-simulator communication, which they do through an HLA driven 

network. HLA was chosen to be the suitable communication architecture for the 

advantages it provides over MPI for this scenario, such as data distribution and 

subscription, and implicit interaction. The water simulator is the most multifaceted 

component having visually interactive water and provision to send and receive data to and 

from each floating object simulator. On the other hand, the floating objects only 

communicate with the water simulator. They were chosen to be 3-Dimensional boxes 

having simple simulation behavior, like changing orientation based on changing terrain; 

in this case the water surface. This simplification of the floating objects’ logic does not 

reduce our target problem of having complex multi-crafts. This is because each object has 

its own computing resources that it will not share. In real-world implementation, their 

complexity would be taken care of by employing appropriate processing power. 
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To enable interactivity, changes in water surface should affect the floating objects 

and movement of the objects should affect the water, such as creating ripples and wakes. 

There should be observable indirect interactions between multiple floating objects that 

happen via the water. For example, water surface disturbance created by one floating 

object will affect other nearby floating objects. 

Another objective of this prototype is to observe MBD system performance and 

study the effect of network load on simulation throughput. The final objective is to 

design, identify and implement system components of a general MBD system. 

The full source code of this prototype is included in the Supplementary Files. 

Here, analysis of the system and its different components are discussed. 

4.2 System Analysis 

The main requirement is a system that provides real-time simulation of water with 

multiple objects having complex models. As a consequence of the decision to divide the 

multi-craft simulation into networked components, communication becomes a significant 

part of this technique. The data that need to be communicated can be divided into two 

parts: a) onetime initialization data and b) continuous runtime data. The initialization data 

are information regarding the shape, starting position and orientation of each floating 

object. Shape data only need to include the parts that directly interact with the water for 

the water simulator to work. Figure 4-1, schematically illustrates a simulation 

environment where a ship is floating on water. 
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Figure 4-1: Water & Floating Object Simulator 

 

The water simulator updates its wave heights in each update cycle in accordance 

with the algorithm that it uses. An appropriate algorithm should take into account the 

physical boundary of the water and all objects floating on it, where moving objects will 

create wake and disturbances on the water surface. Only the newly updated wave heights 

surrounding the floating object are communicated. In figure 4-1, it is shown as the hull 

shaped grid. Other information may also be communicated, like the logical time that has 

passed between two updates. Upon receiving these data, the floating object simulator, 

according to its simulation logic, will calculate its new states. For the ship in figure 4-1, 

among these new states are the new position and orientation data, namely surge, sway, 

heave, pitch, roll and yaw. These are shown as arrows and will be sent back to the water 

simulator so that the next update cycle can begin. 
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4.2.1 Network Load 

The amount of data that needs to be communicated depends on the shape of the 

floating objects. This prototype considers the floating objects as square-shaped boxes. For 

one floating object in this prototype, the equivalent of the hull shaped grid in figure 4-1 is 

a 20x20 grid of wave heights amounting to a total of about 9.4 kilobytes of data. To be a 

viable solution for the types of scenarios that we want to handle as part of the multi-craft 

problem, the simulation needs to achieve at least 30 updates per second. That is a total of 

282 kilobytes of data per second for each floating object that the water simulator needs to 

communicate in order to achieve an acceptable frame-rate. 

 

4.2.2 States and Information Flow 

Figure 4-2 illustrates a high level state diagram of the system. Each participating 

simulator goes through these transitions. 

 

Figure 4-2: Prototype 2 - State Diagram 
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In the Initialization state, one-time communications occur, such as transferring the 

floating objects' shape information to the water simulator. After that, the main simulation 

loop starts. Each cycle begins in the data collection state by collecting new information; 

for example, updated wave heights from the water simulator and updated positions from 

the floating object simulators. Depending on the model, the simulation state advances the 

simulation in logical time. The resulting data is then transferred to all interested 

participants in the Data Transfer state. The cycle ends in the Visualization state where 

these updated data are presented for analysis, and a new cycle begins. Due to the implicit 

nature of the interaction inherent in the HLA communication infrastructure, all data 

collection and transfer happens in an asynchronous (non-blocking) manner. 

 

Figure 4-3 shows the conceptual communication diagram of (a) the water 

simulator and (b) the floating object simulator. In both cases, the Visualizer collects 

the latest available information and draws appropriately to a window to show the current 

state of the simulator. In the water simulator, the IWaveAlgorithm class does the main 

work of using the position and orientation information from multiple RemoteFloat 

objects to update the wave height. The FloatObject class is the equivalent for the 

floating object simulator, which uses the LocalWaveGrid information to simulate that 

corresponding floating object. 
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Figure 4-3: Prototype 2 - Communication Diagram a) Water Simulator, b) Floating Object Simulator 

 

All updated information is sent to the HLAModule class for communication. The 

HLAModule class acts as an intermediary between the HLA Run Time Infrastructure 

(RTI) and the application. Among its responsibilities are registering to the RTI to 

establish what kind of data it wants to publish and subscribe to, and send and receive 

those data to and from the RTI. 
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4.3 System Components 

The implementation of the prototype was done using C++ as the primary source 

language. Information on the main components of the system is presented below. 

4.3.1 Federation Object Model 

The FOM of this system primarily defines two (2) object classes. Table 4-1 lists 

these object classes, along with their attributes, data type of each attribute, update 

condition and publisher / subscriber information. 

 

Table 4-1: Prototype 2 - Publish-Subscribe Matrix 

Object Class Attributes Data Type 
Update 

Type 
Publisher Subscriber 

WaveSystem WaveGrid WaveGridType 
On 

Change 
WaveSystem 

Floating 

Object 

FloatingObject PositionX HLAfloat64LE 
On 

Change 

Floating 

Object 
WaveSystem 

FloatingObject PositionY HLAfloat64LE 
On 

Change 

Floating 

Object 
WaveSystem 

 

All floating object data is published by the floating object simulators and 

subscribed by the water simulator. WaveGrid is updated by the publishing water 

simulator and received by all the subscribing floating object simulators. The Update 

Type of On Change tells the RTI to communicate the values of the attributes whenever 

the value changes. HLAfloat64LE, used for the PositionX and PositionY 

attributes, is a 64-bit predefined floating-point data type. WaveGridType is a custom 
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data type that is based on arrays of HLAfloat32LE (32-bit float) elements. The 

cardinality of this user defined data type is dynamic. 

4.3.2 HLAModule 

The implementation of the HLAModule follows the steps discussed in the 2.2.3 

Federate Development section. Due to the reusability inherent in a HLA system, the 

HLAModule developed in the first prototype was used here with little modifications. In 

addition, for receiving data from RTI this HLAModule makes use of the HLA provided 

encode helper classes, e.g., HLAfloat64LE, HLAfloat64BE, inside the 

reflectAttributeValues() function. These helper classes permit conversion of 

incoming data, formatted in little endian (LE) and big endian (BE) convention, to C++ 

data types. HLA provides helper classes for all common data types, such as integer, 

double, byte, and all common sizes, such as 16, 32, 64-bits. 

4.3.3 Run Time Infrastructure 

The initial development of the prototype used the free RTI provided by Pitch 

Technologies, pRTI TM Free. Although an efficient RTI, it is restricted to support at most 

two federates, a limitation that their commercial version does not have. That only allowed 

one floating object simulator and one water simulator. To alleviate this restriction, at later 

stages of development, the pRTI TM Free was replaced with the open-source Portico 

RTI. Portico RTI is free and does not have any restrictions. The replacement process is 

simple and straight forward, only requiring some environment variable and include-path 
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updates, and did not require any significant re-coding. This is due to the flexibility 

provided by the HLA specification that makes swapping RTI implementations easy. 

4.3.4 Water Simulator 

The water simulator implements the IWave algorithm detailed in section 2.3. The 

encapsulating class, IWaveAlgorithm is shown below, in figure 4-4. 

 

Figure 4-4: IWaveAlgorithm Class 

 

The most important function is the public method, 

void updateHeight(const double &dt) 

It takes the time duration in the parameter dt, and updates the wave heights 

according to the IWave algorithm. Wave heights are stored in a 2-dimensional public 
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array height[][], that the visualizer accesses to draw the graphical output. The energy 

source and obstructions are also 2-dimensional arrays named sourceGrid[][] and 

obstruction[][] respectively. The RemoteFloat class keeps these two arrays 

updated according to the position information received from the remote floating objects. 

For simplification, a one-to-one correlation between simulated grid point and 

rendered grid point is kept. However, high-fidelity visualization could be achieved by 

having intermediate rendering grid points, and interpolating simulated wave heights. 

4.3.5 Floating Object Simulator 

The floating objects do not do any fluid simulation themselves. This simulator 

mainly does two (2) things: a) send position information to the water simulator through 

RTI and b) update the orientation of the local object according to the received wave 

heights. To send position updates, it has keyboard handling logic that takes movement 

commands from the user and calculates new positions. Orientation changes are simulated 

by calculating the overall angle of the local water surface underneath the object, and 

applying a rotation transformation to its geometry, which is a 3-dimensional box in this 

case.  

For the current research, this is enough to visualize that the water surface changes 

are affecting the floating objects, and indirect interactions are occurring between multiple 

floating objects. However, a full-fledged floating object simulator, with an accurate 

model that takes into account gravity, drag, buoyancy and other hydrodynamic 

phenomenon to produce realistic behavior, could also be used, as long as the water 

federate and the floating object federate agree on a common FOM. 
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4.3.6 Graphics 

The graphical output is generated using OpenGL version 3.3 and its corresponding 

shading language GLSL version 3.3. One important responsibility of the graphics 

subsystem is to prepare the wave heights for drawing. This is because the output of the 

IWave algorithm is a 2-dimensional grid of heights, but in OpenGL, 3-dimensional 

geometry is descretized using triangles. 

  

Figure 4-5: 2-D Wave Grid to Triangle Strip Conversion 

A triangle is defined by an ordered list of three (3) vertices. Their order 

(clockwise / counter clockwise) will determine in which direction the corresponding 

triangle is facing. The Visualizer::calculateTriangleStripIndices() is 

a function designed specifically to calculate the order of indices of the 2-D grid that 

accurately converts it into a single triangle strip [43]. For the grid in figure 4-5, the output 

of the function would be 0, 4, 1, 5, 2, 6, 3, 7, 7, 11, 6, 10, 5, 9, 4, 8, 8, 12, 9, 13, 10, 14, 

11, 15. This algorithm is better than having to calculate one strip for each row, because 

the whole grid can be rendered by a single OpenGL draw call. Moreover, since only the 

height of each point changes and not the position on the 2-D grid, this calculation to 

generate the order of indices is done once at initialization, and stored to be reused for all 

subsequent draw calls. 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
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Two important components of the graphics subsystem are the camera and light 

model. The implemented light system could simulate ambient, diffuse, and specular 

lights. The camera offered smooth mouse, and keyboard guided movements that allowed 

observing the simulation from multiple perspectives. 

Figure 4-6 shows the graphical output of the water simulator accommodating two 

remotely connected floating boxes. The flattened red and green areas represent two 

remote floating objects. Those could be controlled in the remote machines to move in any 

direction, causing their changed position to be transmitted to the water simulator via the 

HLA RTI. The figure shows the deformed water surface, generated by the IWave logic, 

as a result of these remote movements. The water simulator was processing an average 80 

frames per second, on a moderately powerful computer running a 2.4 GHz Pentium 

Processor with eight (8) Gigabytes of memory. 

 

Figure 4-6: Water Simulator Output 
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4.3.7 Class Diagram 

Figure 4-7 shows the class diagram of prototype 2. 

 

 

Figure 4-7: Prototype 2 - Class Diagram 
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4.4 Results of Communication Load Test 

As the water simulator is the one communicating with all objects, whereas the 

floating objects communicate only with the water simulator, a number of tests were 

conducted to evaluate the communication capacity of the water simulator. Figure 4-8 

shows the frame/second performance of the water simulator with increasing 

communication load for two different setups. The computers used were moderately 

powerful running a 2.4 GHz Pentium Processor with eight (8) Gigabytes of memory. For 

case 1, the experimental setup consisted of a single machine running the water and 

floating object federates on the same processor. On the other hand, case 2 shows the 

results where all floating objects were simulated on one computer and the water simulator 

ran on a separate computer connected via a Wireless Area Network (WAN). In both 

cases, the water simulator had full functionality, but due to the number of floating objects 

involved, a simplified implementation of them was used with reduced simulation logic 

that primarily communicated data with the RTI. For the single computer run, the floating 

object's visualization had to be turned off, because having both the water and floating 

object federates accessing the sole graphics processing unit made the performance drop 

significantly. 
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Figure 4-8: Communication Load Test 

 

Although these performance measures are dependent on multiple aspects, such as 

the power of the system running the water simulator, the size of the floating objects and 

the efficiency of the algorithm, for this prototype, it was observed that the limit of 

floating objects was about 25 for case 1. Beyond that the system became unstable, and the 

time gap between frames became inconsistent. 

Interestingly, for the remote machine test, the water simulator was more stable, 

having a consistent, low frame drop for more than twice the amount of communication 

load and still remained above 60 frames/second. The test was terminated at about 60 

floating objects, because the remote machine hosting the floating objects started to 

struggle to process all these data coming from the water simulator and crashed. It is 

possible that if the remote machine had more processing power, or if there were multiple 

remote nodes, then the water simulator could have handled even more load. 
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The better performance of the networked setup is attributable to not having to 

timeshare the CPU between multiple competing federates compared to the single machine 

setup. The networked setup also allows all visualizations to be turned on. 

4.5 Conclusion 

This prototype acts as a proof of concept that, for the multi-craft simulation, 

Model Based Division using HLA is a well-suited solution. It shows how the multi-craft 

problem can be divided, implemented and deployed to achieve two-way water-object 

interactivity without sacrificing complexity or accuracy. The development details give 

insights into the different components of the system, their interactions and the overall 

communication requirement. The capability of the communication layer, as evident from 

the communication load test, suggests that, in a production grade deployment this system 

should be capable of simulating real-world multi-craft scenarios, such as a lifeboat 

escorted by ice-breaker, ice field clearing using wake wash. From the load test, we also 

see the quickly diminishing return of a single system solution, where even without 

visualization the system failed to achieve the level of performance of the networked 

setup. 
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Chapter 5: Conclusion 

The magnitude of the multi-craft problem prohibits the extent of solutions that can 

be optimized and implemented in a single-system environment. This prohibition results in 

compromises in realizing a full solution for the multi-craft problem by reducing or 

simplifying pieces of the puzzle, such as sacrificing accuracy in the water simulation, 

reducing the complexity of the floating objects or restricting the maximum number of 

floating objects permitted in a scenario. The current study presents a distributed solution 

for the multi-craft problem that has the potential to overcome these limitations and allows 

the water and floating object simulations to retain as much computational complexity as 

required. 

The two prototype implementations serve as a proof of concept and provide 

evidence for the applicability of the solution to this problem. The first prototype provides 

valuable insights into MPI and HLA and helps the decision of choosing HLA for the 

advanced implementation later. The second prototype shows the applicability of MBD in 

solving the multi-craft problem and demonstrates, through communication load testing, 

the possibility of having several floating objects connected remotely. They also answer 

many design questions, such as the data requirements and information flow. 

5.1 Contribution 

The most important contribution of this study is in devising a suitable solution for 

the multi-craft problem. The research shows that there are primarily five (5) areas where 

the model-based division approach excels : 
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I. Modularity 

Increased modularity is a direct benefit of this technique of determining the scope 

of each simulator by its model. This allows all participating simulators to be designed 

independently of each other by only agreeing on their published and subscribed data. 

Moreover, the HLAModule is capable of abstracting the encoding of the data from the 

application layer. This makes implementation and debugging easier because it is harder 

for errors to propagate from one simulator to another. 

II. Possibility of Individual Optimization 

The multi-craft simulation is inherently parallel and suitable for distributed 

systems. Since each floating object is separated in programming logic, they can be 

simulated in parallel. This solution enables object-water and indirect object-object 

interactions to be achieved as described. Further, it frees the floating object simulator 

from having to perform any water-related calculation. The modularity of this method thus 

simplifies optimization by permitting separate performance tuning of each simulator 

without considering the system as a whole. 

III. Scalability 

This system is scalable because introducing a new floating object does not 

complicate the water simulator. The majority of the new object simulation load is taken 

care of by a remote process and only the water simulator has to deal with a new shape and 

added data communication. Compared to a single machine system, this is more scalable 

and is only limited by the capacity and latency of the network. 
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IV. Reliability 

This technique also grants enhanced system stability in two major ways. One is by 

separation, which inhibits error propagation, and also by allowing indirect interaction 

through HLA, which makes the system more resilient to failure by allowing any 

participating simulator to crash or stop without shutting the whole simulation down. 

V. Diversity of Floating Object Models 

The indirect interaction provided by HLA also has the possible benefit of allowing 

variability in floating object models. A high fidelity floating object, which requires 

multiple kinds of information from the water simulator, i.e. height field, velocity field, 

and pressure field, can co-exist with a low fidelity floating object, requiring only a small 

subset of all available information. In this case, different floating objects subscribe to 

different sets of data, and the RTI manages appropriate data delivery on runtime. 

5.2 Future Recommendation 

This study opens up a couple of future research prospects. Here are two (2) main 

areas where this research can be expanded, 

a) Large-Scale Implementation: 

All the testing done for this research involves at most two computers. Large-scale 

testing in a production grade environment involving several machines simulating accurate 

fluid and floating objects would generate valuable experimental data to further validate 

the significance of this solution. This would make it possible to take advanced 

performance measurements and analyze the effects of the design on optimization and 
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scalability. It would also allow those complex multi-craft scenarios to be examined that 

acted as the motivation behind this research, such as an ice-breaking ship leading a supply 

ship or a lifeboat, effects of ship wake wash on an ice-field. 

b) Other Fluid Algorithm: 

Study of the adaptability of this technique with different known interactive fluid 

simulation algorithms can also be a worthwhile addition to this research. 

Furthermore, to accommodate the most complex of models, improvements will 

have to be made to the design, such as inclusion of a more advanced time synchronization 

scheme and network data compression. 
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