
SPECIFICATION-BASED TEST ORACLES WITH JUNIT

Shadi G.Alawneh, Dennis K. Peters

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

St. Johns NL A1B 3X5

ABSTRACT

Software testing is an important step to help ensure that the
software is behaving correctly. An important component of
the test process is a test oracle, which determines if the soft-
ware behavior is correct or not. In this paper, we present tools
that enhance an integrated development environment to give
the user the ability to write the formal specifications in a read-
able manner and generate test oracles automatically. The gen-
erated test oracles integrate smoothly with test frameworks
(e.g., JUnit) and hence they can be directly used to test the
behavior of the program. This approach for testing has the
advantage that the quality of testing can be high and very ef-
ficient.

Index Terms— Open Mathematical Documents, Test-
Driven Development, Test Oracle, Automated testing.

1. INTRODUCTION

Testing is a costly process that, if not automated, requires high
concentration from the tester in order to assess the system be-
havior. Unfortunately, non-automated testing usually results
in less than accurate information about the correctness of the
software system. One reason for this is the unavailability of an
effective means for deciding whether the system has behaved
correctly on test executions. The system is executed for some
test data, but usually the result is left for someone to visually
check and predict whether the system has behaved correctly.
Thus, the actual knowledge about the system behavior may
be missed if this is done heedlessly or rashly.

This problem can be solved by using automated test or-
acles in the testing process. As discussed in [1], an oracle
is some method for checking whether the system under test
has behaved correctly on a particular execution. We are de-
veloping an approach to derive test oracles from formal spec-
ifications and associating them into the testing process. Our
approach to deriving and using specification-based test ora-
cles provides an integrated development environment which
gives the user the ability to write formal specifications in a
readable manner and to generate test oracles automatically.
The generated test oracles integrate smoothly with test frame-
works (e.g., JUnit), and hence can be directly used to test the

behavior of the program.

2. FORMAL SOFTWARE SPECIFICATIONS

Formal specifications are documentation methods that use pre-
cisely defined notations, which are usually mathematically
based, to define the software or hardware behavior. These
specifications may be used to develop an implementation and
to drive automated testing, as is discussed in this paper. The
emphasis in the specification is on what the system should
do, not necessarily how the system should do it. Examples of
such languages (or notations) that are used to define formal
specifications are VDM, Z, and B.

Formal specifications have several advantages over more
traditional (informal) techniques:

• Since they are precisely defined, there is little room for
misinterpretation of the intended meaning. This is in
stark contrast to natural language and other informal
techniques, which leave lots of room for (mis)interpretation.

• Formal specifications are a kind of mathematical entity,
so they may be analyzed and studied using mathemati-
cal tools and methods.

• They can be processed automatically, so they can be
used as an exchange medium between software tools.

For automated testing some form of formal specification
of the required behaviour is essential. In a traditional auto-
mated testing process, this specification is in the form of the
testing code, which will implement comparisons or tests to
determine if the actual behaviour is acceptable. In this work
we propose that the specification be expressed in a mathemat-
ical notation and that specification can be used to automati-
cally generate testing code.

With reference to the set of documents described in [2],
in this work, we are focused on deriving test oracles from the
module internal design document [3]. This type of document
describes the module’s data structure, states the intended in-
terpretation of that data structure (in terms of the external in-
terface), and specifies the effect of each access-program on
the module’s data structure.

Computer system behavior is often such that the system
must react to changes in its environment and behave differ-
ently under different circumstances. The result is that the
mathematics describing this behavior consists of a large num-
ber of conditions and cases. It has been long established that
tables can be used to help in the effective presentation of such
mathematics [4, 5, 6]. It has been shown in the previous work
that the tabular representation of relations and functions is a
significant factor in making the documentation more readable,
and so we have customized our tools to support them.

A complete discussion of tabular expressions is beyond
the scope of this paper, hence interested readers are referred to
the cited publications [5, 6]. In their most basic form, tabular
expressions represent conditional expressions. For example,
the function definition in equation (1), could be represented
by the tabular expression in equation (2).

The tabular form of the expressions is not only easier to
read, but also easier to write correctly. Tabular expressions
make it very clear what the cases are, and all that cases are
considered.

f(x, y) df=



x + y if x > 1 ∧ y < 0
x− y if x ≤ 1 ∧ y < 0
x if x > 1 ∧ y = 0
xy if x ≤ 1 ∧ y = 0
y if x > 1 ∧ y > 0
x/y if x ≤ 1 ∧ y > 0

(1)

f(x, y) df=
x > 1 x ≤ 1

y < 0 x + y x− y
y = 0 x xy
y > 0 y x/y

(2)

2.1. Program Specification

A program specification in our work, consists of these compo-
nents: the program invocation gives the name and type of the
program and lists all its actual argument program variables;
an expression that gives the semantics of the program; con-
stants, variables, auxiliary function and predicate definitions.
The following explains these in more detail.

2.1.1. Constants

A constant is a special kind of variable whose value cannot be
altered during program execution. Many programming lan-
guages make an explicit syntactic distinction between con-
stant and variable symbols. For example, in Java the follow-
ing are constants: 10 and “Any Text”.

2.1.2. Variables

A program variable is a way of referring to a memory location
used in a computer program. This memory location holds a

value—perhaps a number or text or more complicated data
type—and this value will change as the program executes.

In a specification, as in mathematics, variables represent
values: the value of program variables in either the initial state
or final state of an execution, the value of expressions passed
as arguments in auxiliary definitions, or the value of quantifi-
cation indices. Variables which represent quantification in-
dices are considered to represent a value only where they are
bound.

All variables must have a type and should be defined in
the documentation.

2.1.3. Auxiliary Function And Predicate Definitions

The definition of an auxiliary function consists of a name, a
type, a list of argument variables and an expression that de-
fines the semantics of the auxiliary function. Also, the defini-
tion of the auxiliary predicate is the same but the expression
is a predicate expression which is described in Section 2.1.4.

2.1.4. Predicate Expressions

A predicate expression is an expression that evaluates to true
or false and consists of either quantified expression as de-
scribed below, or a string of the form G∧H , G∨H , H ⇒ G
or ¬G, where G and H represents predicate expressions.

2.1.5. Quantified Expressions

In our test oracle generator, quantification (∀ — for all, and
∃— there exists) must be restricted to a finite set, which can
be implemented as a java collection so that it can be auto-
matically generated. This is done by permitting only the fol-
lowing forms of quantified expressions (∀i : G(i).H(i)) and
(∃i : G(i).H(i)), where i is a variable, known as the index
variable of the quantification, G(i) is a collection and H(i) is
any predicate expression of a permitted form.

2.2. Sample Program Specification

Figure 1, specifies a program ‘ggcd’ which compares an inte-
ger value ‘i’ with another integer value ‘j’, returns the great-
est common divisor of them if ‘i > 0 ∧ j > 0’, otherwise re-
turns 0. Additionally, it indicates if the two integers are pos-
itive by using the returned value, which is represented by a
boolean variable ‘result’. Note that the auxiliary function
‘gcd’ is a recursive function and so it will be used repeatedly
until the greatest common divisor is found.

3. TOOL SUPPORT

3.1. OMDoc Document Model

As described in [7], the OMDoc (Open Mathematical Docu-
ments) format is a content markup scheme for (collections of)

Program Specification
Boolean
ggcd(Integer i, Integer j, Integer gcdvalue)

i > 0 ∧ j > 0 i ≤ 0 ∨ j ≤ 0
gcdvalue = gcd(i, j) 0
result = TRUE FALSE

Auxiliary Function Definitions
Integer gcd(Integer a, Integer b)

df=
b 6= 0 gcd(b, a%b)
b = 0 a

Fig. 1. Ggcd Program Specification

mathematical documents including articles, textbooks, inter-
active books, and courses. OMDoc also serves as the content
language for the communication of mathematical software.
The specifications in our work consists of program specifica-
tions, which, in OMDoc terms, are symbol definitions con-
tained within theories. Also, each symbol has a type and pos-
sibly other information. Consequently, this leads us to pro-
pose our specification model which consists of these OMDoc
elements:

Theory : a theory is a self-contained part of a specification.
It could, for example, represent a requirements speci-
fication, a module interface specification, a module in-
ternal design document or a single program function.
A theory contains zero or more sections of each of the
following kind.

Symbol : a symbol is a basic component of a specification:
a variable, function, relation or constant. All symbols
that are used in a specification must be defined some-
where, either by being declared to be a bound variable,
defined in the specification itself, defined (globally) in
an imported theory, or from a standard set (e.g., stan-
dard OpenMath content dictionary). A symbol has the
following attributes:

Name : for referring to the symbol (required).

TTS Role : indicates how this symbol is used as part
of a specification (optional).

Type : all symbols should have a type supplied.

Definition : a definition contains an expression that gives the
semantics of a symbol.

Presentation : a presentation contains the format for math-
ematical symbol. A presentation element has for at-
tribute which identifies the symbol represented. Each
presentation contains one or more use elements.

Use : indicates how the symbol represented in a specific lan-
guage. A use element has the following attributes:

Format : specify the name of the language that the
symbol represented in.

Fixity : determines the placement of the symbol.
This attribute can be one of the keywords prefix,
infix, and postfix. For prefix it is placed in front
of the arguments. For infix it is placed between
the arguments. Finally, for postfix it is placed be-
hind the arguments.

Separator : this specifies the separator in the argu-
ment list.

lbrack/rbrack : these two attributes handle the brack-
ets to be used in presentation.

Code : is unparsed formal text and it is not needed in our
documents but in some documents it is needed.

Text : is unparsed informal text and it is important for read-
ability of the document.

3.2. The Eclipse Framework

Eclipse is a software platform comprising extensible applica-
tion frameworks, tools and a runtime library for software de-
velopment and management. It is written primarily in Java to
provide software developers and administrators an integrated
development environment (IDE).“Eclipse employs plug-ins
in order to provide all of its functionality on top of (and in-
cluding) the runtime system, in contrast to some other appli-
cations where functionality is typically hard coded”.[8] Us-
ing this framework to develop our tool provides significant
advantages over developing a stand-alone tool including its
widespread use in the user community, its facilities for tight
integration of documents with other software artifacts, and
provision of support for software development tasks.

3.3. Specification Editor

As a part of our tools, we are developing a specification editor
to support production of software documents, which is illus-
trated in Figure 2. This Editor provides a “multi-page editor”
(which provides different views of the same source file) for
“.tts” files, which are OMDoc files. One page of the editor
is a structured view of the document, another one shows the
raw XML representation, and another gives a detailed view of
the document giving the user the ability to view and edit the
mathematical expressions. The support libraries in Eclipse
provide techniques to ensure that the views of the document
are consistent. This editor is built using several open source
libraries in including the RIACA OpenMath Library.

This editor is seen as a primary means for the human users
to interact with specification documents.

4. TEST ORACLES WITH JUNIT

Our approach for testing the behavior of the program consists
of these steps:

• Write a complete specification of the required behavior
for the program in a formal notation.

• Generate test oracle from the specification.

• Run the program under test in the test framework (e.g.,
JUnit) using the test oracle to verify if it passes or fails.

A good example to illustrate our testing approach is pro-
vided in [9, 10]—converting integers into their roman num-
ber equivalent. We selected this example because it shows the
TDD process which is the next step for our work.

The following uses this example to show the whole pro-
cess for the testing. According to our approach, the first step
is to write a complete specifications of the required behavior
for the program. So, we have written a complete specifica-
tions as follows:

String dToR(Integer i)
df=

i ≥ 1∧ i < 1∨
i ≤ 3999 i > 3999

result = subDToR(i) “NA”

String subDToR(Integer i)
df=

i ≥ 1000 “M”+
subDToR(i− 1000)

i ≥ 900 ∧ i < 1000 “CM”+
subDToR(i− 900)

i ≥ 500 ∧ i < 900 “D”+
subDToR(i− 500)

i ≥ 400 ∧ i < 500 “CD”+
subDToR(i− 400)

i ≥ 100 ∧ i < 400 “C”+
subDToR(i− 100)

i ≥ 90 ∧ i < 100 “XC”+
subDToR(i− 90)

i ≥ 50 ∧ i < 90 “L”+
subDToR(i− 50)

i ≥ 40 ∧ i < 50 “XL”+
subDToR(i− 40)

i ≥ 10 ∧ i < 40 “X”+
subDToR(i− 10)

i = 9 “IX”
i ≥ 5 ∧ i < 9 “V”+

subDToR(i− 5)
i = 4 “IV”

i > 0 ∧ i < 4 “I”+
subDToR(i− 1)

i = 0 “”

The previous specifications consist of two parts: the first
part is the definition for the function dToR(i) which repre-
sents the program function, the second part is the definition
for subDToR(i) function which represents an auxiliary func-
tion. The required behavior that is represented by that speci-
fication is to support the conversion of numbers (1-3999) into
their corresponding roman numerals.

After writing the specifications, then we generate the test
oracle from it as described in Section 5.

Using the oracle involves implementing test code, as laid
out by the test framework, that calls the program under test
and then calls the oracle procedures. In our work, we use JU-
nit because using a framework like JUnit to develop test cases
has a number of advantages, not the least of which is that oth-
ers will be able to understand the test cases and easily write
new ones. In addition, it provides a graphical user interface
(GUI) which makes it possible to write and test source code
quickly and easily. JUnit shows test progress in a bar that is
green if testing is going fine and it turns red when a test fails.
As a consequence, this is makes it possible for the software
developer to easily correct bugs as they are found. The code
below shows how to run the oracle generated in the above
example with JUnit:

package o r a c l e s ;
import s t a t i c org . j u n i t . A s s e r t . ∗ ;
import org . j u n i t . T e s t ;
import org . j u n i t . B e f o r e ;

p u b l i c c l a s s O r a c l e T e s t ex tends
j u n i t . f ramework . T e s t C a s e {

Orac l eOu t o ;
@Before
p u b l i c vo id se tUp ()
throws E x c e p t i o n {

o=new Orac l eOu t () ;

}

@Test
p u b l i c vo id t e s t C o n () {

o . a s s e r t d T o R T O r a c l e (3 4 , Romans . dToR (3 4)) ;

}

}

The previous code contains one test case that test the con-
version of 34 into it is roman letter (XXXIV). The roman let-
ter is computed by the static method Romans.dToR(int) meant
to implement the specification. The user can add any number
of test cases. The result for the previous code is shown in
Figure 3.

Fig. 2. Screenshot of Editor

Fig. 3. TestResult

5. ORACLE GENERATION

In our work, an oracle is a program which, given a test input
and output, will determine if it passes or fails with respect to
the specification from which the oracle was derived. The or-
acle evaluates the characteristic predicate of the specification
relation—if it evaluates true, then that test input and output
passes, otherwise it fails. Note that such an oracle does not
require the existence of a correct version of the program.

In [11] Peters and Parnas discuss the use of test oracles
generated from program documentation. They describe an
algorithm that can be used to generate a test oracle from pro-
gram documentation, and present the results of using a tool
based on it to help test parts of a commercial network manage-
ment application. The results demonstrate that these methods
can be effective at detecting errors and greatly increase the
speed and accuracy of test evaluation when compared with
manual evaluation. The design of test oracle generator they
used allows using only C programming language in this pro-
totype. If we need to choose among several programming
languages we need to add several additional sub-modules, one
for each language.

The work reported in this paper is similar to the work in
[11] but our approach for generating test oracles has the fol-

lowing characteristics that make it unique:

• We are using OMDoc as a standardized storage and
communications format for our specifications, and so
we can take advantage of other tools.

• The semantics of tabular expressions have been gen-
eralized to allow more precise definition of a broader
range of tabular expression types.

• The test oracle generator is implemented using Java.
This makes it easy to integrate with the Eclipse plat-
form.

• The oracle generator has a ‘graphical user interface’
which is shown in Figure 2. This interface gives the
user the ability to select any program specification and
generate the oracle from it. This has the advantage of
enabling the user to interact easly with the specifica-
tions.

• The generated test code integrates smoothly with test
frameworks (e.g., JUnit) and hence, it can be directly
used to test the behavior of the program.

Our tool can generate test oracles from both scalar expres-
sions (logical operators, primitive relations, quantifications),
and tabular expressions. Moreover, it can handle auxiliary
functions and predicates.

The oracle in our approach consists of two kinds of code:
that generated by the Test Oracle Generator (TOG), in Ora-
cleOut.java (this represents the root class for the oracle and
contains the method which can be used to access the oracle),
and the other kind of object classes, in Integer Interval.Java,
InvertedTable.Java, NormalTable.Java and VectorTable.Java,
which are not generated by the TOG but are used by the TOG
generated code.

The code below shows the implementation of the root
class for the oracle (OracleOut.java) for the example that de-
scribed in Section 4.

package o r a c l e s ;
import ca . f i l l m o r e s o f t w a r e . p l u g i n .
O r a c l e U t i l i t i e s . ∗ ;
import s t a t i c org . j u n i t . A s s e r t . ∗ ;

p u b l i c c l a s s Orac l eOu t {

p r i v a t e VarMap v a r s ;
p r i v a t e OutdToR1 t 0 ;

p u b l i c Orac l eOu t () {

v a r s =new VarMap () ;
t 0 =new OutdToR1 (v a r s) ;

}

Fig. 4. Oracle Design of dToR Tabular Expression

p r i v a t e Boolean dToRTOracle (
I n t e g e r i , S t r i n g r e s u l t){

Boolean r e s u l t O r a c l e ;
v a r s . s e t V a l u e (” i ” , i) ;
v a r s . s e t V a l u e (” r e s u l t ” , r e s u l t) ;
r e s u l t O r a c l e = t 0 . dToRT1 () ;

re turn r e s u l t O r a c l e ;
}

p u b l i c vo id a s s e r t d T o R T O r a c l e (
I n t e g e r i , S t r i n g r e s u l t){

a s s e r t T r u e (dToRTOracle (i , r e s u l t)) ;
}

}

In the example described in Section 4, we are using two
kinds of tabular expressions (Vector and Normal). Tabular ex-
pressions are implemented by instantiating an object of one
of several classes of (Java) table objects which implement
the various types of tabular expressions (normal, inverted and
vector). These table objects contain all knowledge of the se-
mantics of tabular expressions, so there is no need for this
knowledge to be in the TOG. The expression in each cell of
the table is implemented as Java class that extends CellBase
(abstract class) and contains a procedure that evaluates that
expression. This approach for implementing tabular expres-
sions has the advantage that the oracle code can be more or-
ganized.

Table objects have a method, evaluateTable, which evalu-
ates the tabular expression.

The expression “i ≥ 1 ∧ i ≤ 3999”, which is in the first

cell of the column header of the dToR table, is implemented
as follows.

package o r a c l e s ;
import ca . f i l l m o r e s o f t w a r e . p l u g i n .
O r a c l e U t i l i t i e s . ∗ ;

p u b l i c c l a s s d T o R 1 G r i d 2 C e l l 0
ex tends C e l l B a s e {

p r i v a t e VarMap v a r s ;

p u b l i c d T o R 1 G r i d 2 C e l l 0 (
VarMap v a r s){

t h i s . v a r s = v a r s ;
}

p u b l i c O b j e c t e v a l () {

I n t e g e r i =(I n t e g e r) v a r s .
g e t V a l u e (” i ”) ;

re turn ((i <=3999)&&(i >=1)) ;

}
}

The other cells in each table are implemented in a similar
fashion. The oracle design for the dToR tabular expression is
illustrated in Figure 4 and the design for the subDToR tabular
expression looks similar. Note that, since the oracle code is
automatically generated from the specification, the developer
should not need to read the oracle code itself and so readabil-
ity of this code is not a primary concern.

6. CONCLUSIONS

We propose an approach for deriving and using test oracles
to test the behavior of the program. By using this approach,
we can improve the quality of the software and reduce the er-
rors. Moreover, by extracting test oracles from formal spec-
ifications, we are convinced that the oracles check that the
behavior is as specified.

Moreover, the actual knowledge about the system behav-
ior can’t be missed because the responsibility of checking
whether the system has behaved correctly is done automati-
cally by the test oracle and it is not left for someone to visu-
ally check whether the system has behaved correctly.

7. FUTURE WORK

A major extension that is planned for the test oracle genera-
tor would allow the users to generate test oracles from mod-
ule (class) specifications, which are based on the externally
observable behavior of the class. This will allow the use of
oracles in class testing.

In test-driven development (TDD), the test code is a for-
mal documentation of the required behavior of the component
or system being developed, but this documentation is neces-
sarily incomplete and often over-specific. An alternative ap-
proach to TDD is to write a complete specification of the re-
quired behavior in a formal notation and to generate test cases
and oracles from that specification. This approach has the ad-
vantage that the specifications can be complete and appropri-
ately abstract but still support TDD. So, another enhancement
planned is to make our tools support this approach for TDD.

8. ACKNOWLEDGMENTS

This research was supported by the Faculty of Engineering
and Applied Science at Memorial University of Newfound-
land (MUN) and the Government of Canada through the Nat-
ural Sciences and Engineering Research Council (NSERC).

9. REFERENCES

[1] William E. Howden, Functional Program Testing and
Analysis, McGraw-Hill Book Company, 1987.

[2] David Lorge Parnas and Jan Madey, “Functional docu-
mentation for computer systems,” Science of Computer
Programming, vol. 25, no. 1, pp. 41–61, Oct. 1995.

[3] David Lorge Parnas, Jan Madey, and Michal Iglewski,
“Precise documentation of well-structured programs,”
IEEE Trans. Software Engineering, vol. 20, no. 12, pp.
948–976, Dec. 1994.

[4] David Lorge Parnas, “Inspection of safety critical soft-
ware using function tables,” in Proc. IFIP Congress.
Aug. 1994, vol. I, pp. 270–277, North Holland.

[5] Ruth F. Abraham, “Evaluating generalized tabular ex-
pressions in software documentation,” M. Eng. thesis,
McMaster University, Dept. of Electrical and Computer
Engineering, Hamilton, ON, Feb. 1997.

[6] Ryszard Janicki and Ridha Khedri, “On a formal se-
mantics of tabular expressions,” Science of Computer
Programming, vol. 39, no. 2–3, pp. 189–213, Mar. 2001.

[7] Michael Kohlhase, OMDoc: An Open Markup Format
for Mathematical Documents (Version 1.2), Number
4180 in Lecture Notes in Artificial Intelligence. Springer
Verlag, 2006.

[8] Eric Clayberg and Dan Rubel, Eclipse Plug-ins,
Addison-Wesley, 2008.

[9] Clarke Ching, “A brief introduction to test driven
development using microsoft excel and vba,”
http://www.clarkeching.com/2006/04/test driven dev.html.

[10] Dave Nicolette and Karl Scotland, “Manager’s intro-
duction to test-driven development,” Agile Confer-
ence, 2008, http://www.infoq.com/presentations/TDD-
Managers-Nicolette-Scotland.

[11] Dennis K. Peters and David Lorge Parnas, “Using test
oracles generated from program documentation,” IEEE
Trans. Software Engineering, vol. 24, no. 3, pp. 161–
173, Mar. 1998.

