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ABSTRACT

The display method is a technique for documenting the design of a program and presenting it
such that it can be reviewed in small, independent pieces. This paper uses the display method
to present a reasonably complicated program: an implementation of Dijkstra’s ‘shortest path
algorithm’. The number of displays required to document a program can sometimes be re-
duced by using procedure specifications instead of program specifications, as is done in previ-
ous work using the display method. When writing procedure specifications care must be taken
to describe the required behaviour under aliasing conditions. A discussion of specifications
for C functions is given.

1.0  Introduction

In [6] Parnas et al. present a method for program documentation, known as thedisplay
method, in which a program is presented as a set of displays, which can each be independ-
ently verified. This paper illustrates how a variant of the display method can be used to
understand and verify a reasonably complicated program. It also shows how the display
method can be used withprocedure specifications (as opposed toprogram specifications).
The example used to illustrate these points is an implementation of Dijkstra’s ‘shortest
path algorithm’ as presented in [1] pp. 167-172.

2.0  The Display Method

In the Display Method a program is presented as a set ofdisplays each of which contains
three parts:

• P1:a specification of the portion of the program presented in this display,

• P2: the text of that part of the program, which may invoke other (sub-)programs, and

• P3: the specifications of all of the programs (other than that specified in P1) invoked in
P2 that are not known1.

Each display is a concise document, which can be used to determine the correctness of the
portion of the program presented without needing to refer to other displays. The documen-

1.  A known program is a program for which the semantics are assumed to be understood and hence a speci-
fication is not required.
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tation also includes a lexicon, in which terms used in the documentation are defined. In the
example presented in this paper terms that are defined in the lexicon are written in italics.

2.1  Specifications

As pointed out in [6], the display method is suitable for use with any program specification
technique. In this paper, as in [6], programs are specified by giving the characteristic pred-
icate of a Limited-Domain Relation (LD-Relation) describing the required behaviour.
Briefly, anLD-relation is a pair, (relation, set), where the relation gives the state pairs
(start state, stop state) that are considered to be acceptable behaviour of the program, and
the set, known as thecompetence set, gives those start states for which the program is
required to terminate. Usually in practice, as for all of the specifications in this paper, the
competence set is the same as the domain of the relation, in which case it is omitted by
convention. Also as in [6], tabular forms are used for representing LD-relations. For a
more detailed discussion of LD-relations and their representation in tabular forms the
reader is referred to [6].

2.2  Procedure Specifications

One unpleasant feature of the display method is that, if a procedure with arguments is used
in a set of displays there will be a different specification for each invocation of the pro-
gram, each of which must appear in P1 of a display in order for the set of displays to be
complete. Thus, if the procedure is used more than once its body will appear in P2 of sev-
eral displays: one foreach time it is used. The reason for this is explained in [3]:

The texts that we call “procedures with arguments” are not pro-
grams in the sense used…[in this paper]. In general, until the actual
arguments are known (i.e. until we see the invocation) we do not
know which actual elements of the data state will be affected by the
execution nor do we know what effect the execution will have on
the data structure. Consequently, procedures with arguments cannot
be described by program functions (because determining the set of
possible executions requires knowing the actual arguments used in
an invocation).

In this paper, I illustrate how, in certain cases, it is possible to give aspecification for a
procedure in the form of an LD-relation and hence possibly reduce the number of displays
required for a program (although this is not the case for the program presented in
section4.0). Procedure specifications must give the acceptable behaviour ofall possible
programs resulting from an invocation of the procedure.

The responsibilities of the inspectors of a set of displays are slightly different from the
normal case when this approach is used. When inspecting a display in which P1 contains a
procedure specification, the inspector must convince herself thatany invocation of the
procedure in P2 will satisfy the specification in P1 under the assumption that the programs
invoked in P2 satisfy the specifications given in P3. Care must be taken in cases where P3
contains procedure specifications: the inspector must use knowledge of the parameter
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binding semantics of the language to ensure that the procedures are specified to do the
right thing for the invocations appearing in P2.

Writing procedure specifications is straightforward in instances where the parameter bind-
ing semantics are such that no aliasing could occur, but can be quite difficult if aliasing is
a possibility. One solution that may be acceptable in many cases is to give the characteris-
tic predicate of the procedure specification relation in the form “¬aliasing⇒ normal
behaviour”, which means that any terminating behaviour is acceptable if aliasing occurs.
If, in addition, the characteristic predicate of the competence set is given as “¬aliasing”,
then non-terminating behaviours are also acceptable where aliasing occurs. This has the
advantage that both the programmer responsible for implementing the procedure, and the
inspector charged with verifying it are relieved of the responsibility of detecting aliasing.
Since detecting aliasing in general requires knowledge of the invocation (i.e. the actual
variables passed as parameters) it is appropriate that the responsibility of avoiding aliasing
be given to the programmer using a procedure. If a procedure is specified as described
above, the programmer and inspector can make no assumptions about its behaviour if
aliasing does occur.

2.2.1  Semantics of C Functions

The example presented in this paper is written using the C programming language. In this
section I discuss the specifics of writing procedure specifications for C ‘functions’ (proce-
dures).

In C, all function arguments are passed “by value.” This means that
the called function is given the values of its arguments in temporary
variables rather than the originals.[4] p. 27

It would seem from the above statement that aliasing should not be a problem in C since
all formal arguments are local variables with their value set to equal the corresponding
actual arguments at the time of invocation. However, since C allows ‘pointer’ data types
(references) it is quite possible for aliasing to occur. Consider the following procedure,
which compares two integers and replaces the largest with their difference.

void
gcdStep(int *x, int *y)
{

if (*x > *y) {
*x = *x - *y;

} else {
*y = *y - *x;

}
}

In this example the variablesx  andy  are pointers to other integer variables (i.e. in the call-
ing procedure), and so the data structure for an invocation ofgcdStep  includes the vari-
ables pointed to byx  andy, denoted*x  and*y , as well asx  andy. Note that sincex  and
y  are temporary variables (i.e. they only exist while the procedure is executing) it makes
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no sense to place restrictions on their final values. One might be tempted to give the spec-
ification for gcdStep as follows1.

The procedure given does not satisfy this specification, however, since in the instance
wherex  = y  (i.e.*x  and*y  are the same variable) the condition that *x' = '*x will not be
satisfied. However, if we are sure that we will not want to use this procedure in that situa-
tion, then it might be best to specify it as follows,.

This specification allows any terminating behaviour when*x  and*y  are the same varia-
ble. So, for example, we could convince ourselves that the following implementation of
Euclid’s greatest common divisor algorithm[2] is correct.

int
gcd(int x, int y)
{

while (x != y) {
gcdStep(&x, &y);

}
return(x);

}

One problem with this approach is that it may sometimes be difficult to state exactly when
aliasing will occur. In the above example I have made the assumption (valid in C) that two
non-equal pointers do not reference overlapping integer variables. For more complex data

1.  The dereferencing operator “*” will be assumed to have a higher precedence than the “ ' ”, so that *x' is
the value in the stopping state of the variable pointed to by x.

void
gcdStep(int *x, int*y)

RgcdStep(,) =

'*x > '*y '*y ≤ '*x

*x' = '*x - '*y '*x

*y' = '*y '*y - '*x

void
gcdStep(int *x, int *y)

RgcdStep(,) = ¬('x = 'y) ⇒

'*x > '*y '*y ≤ '*x

*x' = '*x - '*y '*x

*y' = '*y '*y - '*x
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types pointer arithmetic, and a great deal of care, must be used. Some examples of how
this is done are the predicatesnoAliasing andoverlapList in the displays in section4.0.

Since C allows a procedure to pass a value back to the caller using thereturn  statement
(which assigns a value to the accumulator register), this variable must also be treated as
part of the data structure of the procedure. In this work, the namevalue  is used to repre-
sent the value returned by a procedure.

3.0  Shortest Path Problem Description

The problem is to find the route between two nodes in a directed weighted graph such that
it has the lowest total weight of all routes between those two nodes. The algorithm is to
construct a spanning tree as follows: Add the starting node to the tree. Select the node, v,
adjacent to the tree that has the lowest total weight of a path from the starting node to v
and add it to the tree. Repeat this step until the destination node if found to be the nearest
node adjacent to the tree.

The graph is represented by an array, graph , of linked lists, one for each node, ofEdg-
eNode structures. Each list contains the weights of the edges leading from that node. The
path  array stores information about the candidate paths through the graph:dist  is the
weight of the shortest route found to each node,status  indicates whether each node is
in the tree, a fringe node, or has not been seen yet,fringeLink  is the next node in the
list of current fringe nodes andparent  is the preceding node in the chosen path.
fringeList  is the first fringe node in the list.

4.0  Formal Description

4.1  Data Structure
typedef int VertexType; /* Can’t enforce range checking in C */

typedef struct EdgeNode * NodePointer;
typedef int BOOL;
typedef enum STATUS { INTREE, FRINGE, UNSEEN } StatusType;

struct EdgeNode {
VertexType vertex; /* Should be between 1...MAXVERTICES */
int weight;
NodePointer link;

};

typedef struct {
StatusType status; /* The nodes current status. */
int dist; /* The shortest path weight to this node */
VertexType fringeLink; /* the next node in the fringeList */
VertexType parent; /* the previous node in the path */

} PathElem;
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4.2  Displays

DISPLAY 1
Specification

Program
{
VertexType fringeList;
VertexType x;
BOOL stuck;

initFirst(&path[v]);
fringeList = MAXVERTICES;
x = v;
stuck = FALSE;

while (x != w && !stuck) {
fringeList = addNeighbours(graph[x], x, fringeList, path);
if (fringeList == MAXVERTICES) {

stuck = TRUE;
} else {

x = chooseShortest(path, &fringeList);
}

}
return(x);
}

static VertexType
shortestPath(NodePointer graph[MAXVERTICES],

VertexType v, VertexType w,
PathElem path[MAXVERTICES])

RshortestPath = NCP(graph)∧ (noAliasing(graph, path)∧
(∀i,(0 ≤ i < MAXVERTICES)⇒ ('path[i].'status = UNSEEN)))⇒

existsPath(graph, v, w) ¬existsPath(graph, 'v, 'w)

path' | validPath(path', graph, 'v, 'w) ∧
(path[w].dist' =weight(path', graph, 'v, 'w)) ∧
¬(∃p,validPath(p, graph, 'v, 'w) ∧

(weight(p, graph, 'v, 'w) < path['w].dist')))

true

value | value = 'w ¬(value = 'w)
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Subprogram Specifications

static void
initFirst(PathElem *first)

RinitFirst = (first->staus' = INTREE)∧ (first->dist' = 0)∧
(first->parent' = MAXVERTICES)

static VertexType
addNeighbours(NodePointer adjList,

VertexType me, VertexType fringe
PathElem path[MAXVERTICES])

RaddNeighbours = NCP(path[me], adjList)∧
¬overlapList(adjList, path, MAXVERTICES*sizeof(PathElem))⇒
((∀i,(0 ≤ i < MAXVERTICES)⇒ (
(path[i].status' = INFRINGE⇒ inFringe(path', value, i))∧
(inFringe('path, fringe, i)⇒ inFringe(path', value, i))∧

adjacent(adjList, i) ∧
[(path[i].'status = UNSEEN)∨
((path[i].'status = INFRINGE)∧
 (path[i].'dist > (linkWeight(adjList, i) +

path[me].'dist)))]
¬adjacent(adjList, i) ∨
(path[i].'status = INTREE)

path[i].dist' = linkWeight(adjList, i) + path[me].'dist path[i].'dist

path[i].parent' = me path[i].'parent

path[i].status' = INFRINGE path[i].'status )))
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END OF DISPLAY 1

static VertexType
chooseShortest(PathElem path[MAXVERTICES], VertexType *start)

RchooseShortest = (∀i,(0 ≤ i< MAXVERTICES)⇒ NC(path[i].dist))∧
(¬('*start = 0)∧
¬(path-sizeof(VertexType) < start < path+MAXVERTICES*sizeof(PathElem)))⇒

true

path', *start' | ¬inFringe(path', *start', value)∧
(∀i, inFringe(path', *start', i)⇒ inFringe('path, '*start, i))∧
(∀i, (inFringe('path, '*start, i) ∧ (i ≠ value))⇒

inFringe(path', '*start', i))

path[value].status' = INTREE

value | inFringe('path, '*start, value)∧
( ∀i, inFringe('path, '*start, i)⇒ (path[i].'dist≥ path[value].'dist))
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DISPLAY 2
Specification

Program
{
f irst->status = INTREE;
f irst->dist = 0;
f irst->parent = MAXVERTICES;
}

Subprogram Specifications
END OF DISPLAY 2

static void
initFirst(PathElem *first)

RinitFirst = (first->staus' = INTREE)∧ (first->dist' = 0)∧
(first->parent' = MAXVERTICES)
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DISPLAY 3
Specification

Program
{
NodePointer ptr;

ptr = adjList;
while (ptr != NULL) { /* Traverse all edges leading from me. */

if (newFringe(&path[ptr->vertex], ptr->weight, &path[me], me)) {
path[ptr->vertex].fringeLink = fringe;
fringe = ptr->vertex;

}
ptr = ptr->link;

}
return(fringe);
}

static VertexType
addNeighbours(NodePointer adjList,

VertexType me, VertexType fringe
PathElem path[MAXVERTICES])

RaddNeighbours = NCP(path[me], adjList)∧
¬overlapList(adjList, path, MAXVERTICES*sizeof(PathElem))⇒
((∀i,(0 ≤ i < MAXVERTICES)⇒ (
(path[i].status' = INFRINGE⇒ inFringe(path', value, i))∧
(inFringe('path, fringe, i)⇒ inFringe(path', value, i))∧

adjacent(adjList, i) ∧
[(path[i].'status = UNSEEN)∨
((path[i].'status = INFRINGE)∧
 (path[i].'dist > (linkWeight(adjList, i) +

path[me].'dist)))]
¬adjacent(adjList, i) ∨
(path[i].'status = INTREE)

path[i].dist' = linkWeight(adjList, i) + path[me].'dist path[i].'dist

path[i].parent' = me path[i].'parent

path[i].status' = INFRINGE path[i].'status )))
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Subprogram Specifications

END OF DISPLAY 3

static BOOL
newFringe(PathElem *new, int weight, PathElem *me, VertexType my_num)

RnewFringe = NCP(me)∧ ¬(new-sizeof(PathElem) < me < new+sizeof(PathElem))⇒

(new->'status = UNSEEN)∨
((new->'status = INFRINGE)∧
(new->dist > (me->'dist + 'weight)))

(new->'status = INTREE)∨
((new->'status = INFRINGE)∧
(new->dist≤ (me->'dist + 'weight)))

new->parent' = 'my_num new->'parent

new->status' = INFRINGE new->'status

new->dist' = me->'dist + 'weight new->'dist

value = TRUE FALSE
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DISPLAY 4
Specification

Program
{
BOOL fringe = FALSE;

if (new->status == FRINGE && (me->dist + weight < new->dist)) {
/* This is a new better route to new */
new->parent = my_num;
new->dist = me->dist + weight;

}
if (new->status == UNSEEN) {

/* y is now on the fringe */
new->status = FRINGE;
new->parent = my_num;
new->dist = me->dist + weight;
fringe = TRUE;

}
return(fringe);
}

Subprogram Specifications
END OF DISPLAY 4

static BOOL
newFringe(PathElem *new, int weight, PathElem *me, VertexType my_num)

RnewFringe = NCP(me)∧ ¬(new-sizeof(PathElem) < me < new+sizeof(PathElem))⇒

(new->'status = UNSEEN)∨
((new->'status = INFRINGE)∧
(new->dist > (me->'dist + 'weight)))

(new->'status = INTREE)∨
((new->'status = INFRINGE)∧
(new->dist≤ (me->'dist + 'weight)))

new->parent' = 'my_num new->'parent

new->status' = INFRINGE new->'status

new->dist' = me->'dist + 'weight new->'dist

value = TRUE FALSE
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DISPLAY 5
Specification

Program
{
VertexType min, m_prev = 0;
VertexType cur, prev;
min = *start;
prev = *start;
cur = path[*start].fringeLink;
while (cur != MAXVERTICES) {

if (path[min].dist > path[cur].dist) {
m_prev = prev;
min = cur;

}
prev = cur;
cur = path[cur].fringeLink;

}
if (min == *start) {

*start = path[min].fringeLink;
} else {

path[m_prev].fringeLink = path[min].fringeLink;
}
path[min].fringeLink = MAXVERTICES;
path[min].status = INTREE;
return(min);
}

Subprogram Specifications
END OF DISPLAY 5

static VertexType
chooseShortest(PathElem path[MAXVERTICES], VertexType *start)

RchooseShortest = (∀i,(0 ≤ i< MAXVERTICES)⇒ NC(path[i].dist))∧
(¬('*start = 0)∧
¬(path-sizeof(VertexType) < start < path+MAXVERTICES*sizeof(PathElem)))⇒

true

path', *start' | ¬inFringe(path', *start', value)∧
(∀i, inFringe(path', *start', i)⇒ inFringe('path, '*start, i))∧
(∀i, (inFringe('path, '*start, i) ∧ (i ≠ value))⇒

inFringe(path', '*start', i))

path[value].status' = INTREE

value | inFringe('path, '*start, value)∧
( ∀i, inFringe('path, '*start, i)⇒ (path[i].'dist≥ path[value].'dist))
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LEXICON

A.  Auxiliary Pr edicates

adjacent: NodePointer× VertexType

adjacent(list, v)  (list->vertex = v)∨ (¬(list->link = NULL) ∧ adjacent(list->link, v))

existsPath: array of NodePointer× VertexType× VertexType

existsPath(graph, start, end) (start = end)∨
(∃v, 0 ≤ v < MAXVERTICES∧ adjacent(graph[start], v)∧ existsPath(graph, v,

end))

inFringe: array of PathElem× VertexType× VertexType

inFringe(path, start, elem)  (start = elem)∨
(¬(path[start].fringeLink = 0)∧ inFringe(path, path[start].fringeLink, elem))

noAliasing: array of NodePointer× array of PathElem

noAliasing(graph, path)  (¬(graph-MAXVERTICES*sizeof(PathElem) < path <
graph+MAXVERTICES*sizeof(NodePointer))∧

(∀i, (0 ≤ i < MAXVERTICES) ⇒
¬overlapList(graph[i], path, MAXVERTICES*sizeof(PathElem))

overlapList: NodePointer× void * × integer

overlapList(node, x, size)

validPath: array of PathElem× array of NodePointer× VertexType× VertexType

validPath(path, graph, start, end) adjacent(graph[path[end].parent], end)∧
((path[end].parent = start)∨ validPath(path, graph, start, path[end].parent))

node = NULL ¬(node = NULL)

false ((node-size) < x < (node+ MAXVERTICES*sizeof(struct EdgeNode))

∨ overlapList(node->link, x, size)

=df

=df

=df

=df

=df

=df
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B.  Auxiliary Functions

linkWeight: NodePointer× VertexType→ integer

linkWeight(list, end)

weight: array of PathElem× array of NodePointer× VertexType× VertexType→ integer

weight(path, graph, start, end)
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list->vertex = end ¬(list->vertex = end)

value = list->weight linkWeight(list->link, end)

path[end].parent = start∧
adjacent(graph[start], end)

¬(path[end].parent = start)∧
adjacent(graph[path[end].parent], end)

value = linkWeight(graph[start], end) linkWeight(graph[path[end].parent], end) +

weight(path, graph, start, path[end].parent)

=df

=df


