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Abstract— Simulation of the behaviour of a ship operating
in pack ice is a computationally intensive process to which
General Purpose Computing on Graphical Processing Units
(GPGPU) can be applied. In this paper we present an efficient
parallel implementation of such a simulator developed using
the NVIDIA Compute Unified Device Architecture (CUDA).
We have conducted an experiment to measure the relative
performance of the parallel and serial versions of the simulator
by running both versions on several different ice fields for several
iterations to compare the performance. Our results show speed
up of up to 77 times, reducing simulation time for a small ice
field from over 88 minutes to about 68 seconds.

Index Terms— GPGPU, CUDA, simulation.

I. INTRODUCTION

The Sustainable Technology for Polar Ships and Structures
(referred to as STePSS or STePS?)! project supports sus-
tainable development of polar regions by developing direct
design tools for polar ships and offshore structures. Direct
design improves on traditional design methods by calculating
loads and responses against defined performance criteria. The
project goal is to increase the understanding of interactions
between ice and steel structures such as ships and oil rigs.
The project began in July 2009 and has a duration of five
years. It takes place at the St. John’s campus of Memorial
University of Newfoundland and is funded by government
and private sector partners. The deliverables of the project
include a numerical model which accurately handles collision
scenarios between ice and steel structures. We are using
General Purpose GPU computing, or GPGPU to implement
some of the numerical models in this project.

“Commodity computer graphics chips, known generically
as Graphics Processing Units or GPUs, are probably to-
day’s most powerful computational hardware for the dol-
lar. Researchers and developers have become interested in
harnessing this power for general-purpose computing, an
effort known collectively as GPGPU (for ‘General-Purpose
computing on the GPU”).”[1] GPUs are particularly attractive
for many numerical problems, not only because they provide
tremendous computational power at a very low cost, but also
because this power/cost ratio is increasing much faster than
for traditional CPUs. A reason for this is a fundamental
architectural difference: CPUs are optimized for high perfor-
mance on sequential code, with many transistors dedicated to
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extracting instruction-level parallelism with techniques such
as branch prediction and out-of-order execution. On the other
hand, the highly data-parallel nature of graphics computations
enables GPUs to use additional transistors more directly for
computation, achieving higher arithmetic intensity with the
same transistor count.[1] Many other computations found
in modelling and simulation problems are also highly data-
parallel and therefore can take advantage of this specialized
processing power.

Hence, in this research we are trying to use the benefit
of the high performance of the GPU to implement fast
algorithms that can simulate ice-ice and ice-structure inter-
actions in a very short time. In this paper, we present some
results of measuring the performance of the GPU version
of the simulator with respect to the CPU version through
an experiment consisting of implementing both serial and
parallel version of the simulator and running them both
on different ice fields for several iterations to compare the
performance.

A. Ice Floe Simulation

The particular problem that we are investigating is to
simulate the behaviour of floating ice floes (pack ice, see Fig.
1) as they move under the influence of currents and wind
and interact with land, ships and other structures, possibly
breaking up in the process. In a two-dimensional model, we
model the floes as convex polygons and perform a discrete
time simulation of the behaviour of these objects. The goal
of this work is to be able to simulate behaviour of ice fields
sufficiently quickly to allow the results to be used for planning
ice management activities, and so it is necessary to achieve
many times faster than real-time simulation.

This project is structured in two components, the Ice
Simulation Engine, which is the focus of this paper, and the
Ice Simulation Viewer, which is being developed to display
the data produced by the simulation engine. The simulation
viewer displays frames of ice field data sequentially to provide
its user with a video of a simulation of the field. It is currently
used by the STePS? software team to help determine the
validity of the data calculated by the simulation and will
eventually be used to present results to project partners. The
Ice Simulation Viewer is being developed in C++ using the
Qt [3] user interface framework. Fig. 2 shows a screenshot



Fig. 1. Ice Floe[2]

of the main interface of the Ice Simulation Viewer with ice
field loaded.
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Fig. 2. Ice Simulation Viewer

II. METHODOLOGY
A. Stream Processing

The basic programming model of traditional GPGPU is
stream processing, which is closely related to SIMD?. A
uniform set of data that can be processed in parallel is called
a stream. The stream is processed by a series of instructions,
called a kernel [4]. Stream processing is a very simple and
restricted form of parallel processing that avoids the need for
explicit synchronization and communication management. It
is especially designed for algorithms that require significant
numerical processing over large sets of similar data (data
parallelism) and where computations for one part of the data
only depend on ‘nearby’ data elements. In the case of data
dependencies, recursion or random memory access stream
processing becomes ineffective [4], [5]. Computer graphics
processing is very well suited for stream processing, since
vertices, fragments and pixels can be processed independently
of each other, with clearly defined directions and address
spaces for memory accesses. The stream processing program-
ming model allows for more throughput oriented processor
architectures. For example, without data dependencies caches
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can be reduced in size and the transistors can be used for
ALUs instead. Fig. 3 shows a simple model of a modern
CPU and a GPU. The CPU uses a high proportion of its
transistors for controls and caches while the GPU uses them
for computation (ALUs).
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Fig. 3. Simple comparison of a CPU and a GPU [6]

B. CUDA

Compute Unified Device Architecture (CUDA) is a com-
prehensive software and hardware architecture for GPGPU
that was developed and released by Nvidia in 2007. It is
Nvidia’s move into GPGPU and High-Performance Comput-
ing (HPC), combining huge programmability, performance,
and ease of use. A major design goal of CUDA is to support
heterogeneous computations in a sense that serial parts of an
application are executed on the CPU and parallel parts on the
GPU[7]. An general overview of CUDA is illustrated in Fig.
4.
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Fig. 4. CUDA overview [8]

Nowadays, there are two distinct types of programming
interfaces supported by CUDA. The first type is using the
device level APIs (left part of Fig. 4) in which we could use
the new GPGPU standard DirectX Compute by using the high
level shader language (HLSL) to implement compute shaders.
The second standard is OpenCL which is created by the
Khronos Group (as is OpenGL). OpenCL kernels are written
in OpenCL C. The two approaches don’t depend on the GPU
hardware hence they can use GPUs from different vendors.
In addition to that, there is a third device-level approach



through low-level CUDA programming which directly uses
the driver. One advantage of this approach is it gives us a lot
of control, but a disadvantage is that it is complicated because
it is low-level (it interacts with binaries or assembly code).
Another programming interface is the language integration
programming interface (right column of Fig. 4). Based on
[8], it is better to use the C runtime for CUDA which is
a high-level approach that requires less code and is easier
in programming and debugging. Also, we could use high-
level languages e.g. Fortran, Java, Python, or .NET languages
through bindings. Therefore, in this work we have used the
C runtime for CUDA.

Based on [9], the CUDA programming model suggests a
helpful way to solve the problems by splitting it into two
steps: The first one into coarse independent sub-problems
(grids) and then into finer sub-tasks that can be executed
cooperatively (thread blocks). The programmer writes a se-
rial C for CUDA program which invokes parallel kernels
(functions written in C). The kernel is usually executed as
a grid of thread blocks. In each block the threads work
together through barrier synchronization and they have access
to a shared memory which is only visible to the block.
Each thread in a block has a different thread ID which
can be accessed though threadldx. Each grid consists of
independent blocks. Each block in a grid has a different block
ID which can be accessed though blockIdx. Grids can be
executed either independently or dependently. Independent
grids can be executed in parallel provided that we have a
hardware that supports executing concurrent grids. Dependent
grids can only be executed sequentially. There is an implicit
barrier that ensures that all blocks of a previous grid have
finished before any block of the new grid is started.

C. Collision Detection

Since we are using a discrete time simulation, for each
time step we detect collisions by searching for regions of
overlap between ice floes, compute the force that would result
from such a collision and adjust the velocity of each floe
accordingly. The problem of detecting collisions between ice
floes is broken down into two parts: determining if the floes
are overlapping, and computing the region of overlap.

To determine whether or not two convex polygons are
intersecting we have used the method of separating axes
[10]. This method is for determining whether or not two
stationary convex objects are intersecting, and we extend it to
our moving objects by considering the objects at each time
step. This method is a fast generic algorithm that can remove
the need to have collision detection code for each type pair
(any type of convex polygons) thereby reducing code and
maintenance.

In this method the test for nonintersection of two convex
objects is simply stated: If there exists a line for which
the intervals of projection (the lowest and highest values of
the polygon projection on the line) of the two objects onto
that line do not intersect, then the objects do not intersect.

Such a line is called a separating line or, more commonly, a
separating axis.

For a pair of convex polygons in 2D, only a finite set of
direction vectors needs to be considered for separation tests:
the normal vectors to the edges of the polygons. The left
picture in Fig. 5 shows two nonintersecting polygons that are
separated along a direction determined by the normal to an
edge of one polygon. The right picture shows two polygons
that intersect (there are no separating directions).
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Fig. 5. Nonintersecting convex polygons (left). Intersecting convex polygons
(right). [10]

Once it has been determined that two polygons are over-
lapping, we must find the region of overlap to compute
the resultant force. Finding the intersection of two arbitrary
polygons of n and m vertices can have quadratic complexity,
Q(nm). But the intersection of two convex polygons has only
linear complexity, O(n+m). Intersection of convex polygons
is a key component of a number of algorithms, including
determining whether two sets of points are separable by
a line. The first linear algorithm was found by Shamos
[11], and since then a variety of different algorithms have
been developed, all achieving O(n + m) time complexity.
In our work, we have used the algorithm that developed
by O’Rourke, Chien, Olson & Naddor [12]. Based on the
research that we have done to find an algorithm for calculating
the intersection between two convex polygons, we haven’t
found simpler than the one that we have used in this work.

The basic idea of the algorithm is as illustrated in Al-
gorithm 1[12]. Here, we assume the boundaries of the two
polygons P and () are oriented counterclockwise, and let A
and B be directed edges on each. The algoirthm has A and
B chasing one another.

D. Implementation Discussion

As we have developed our implementation we have pro-
gressed through three different general structures of the GPU
solution, as follows. The relative performance of these is
illustrated in Fig. 7.

In the first implementation, we used two CUDA kernels:
One, executed using one thread per polygon, finds the list
of all pair-wise collisions by determining which pairs of
polygons (ice floes) are overlapping. The second kernel,
executed using one thread per overlapping polygon pair,
computes the collision response (forces) for each pair. This
approach resulted in speed-up of up to 10 times as compared
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Fig. 6. Ice Simulator Framework

with the CPU implementation, achieving real-time results in
only particular cases and so is insufficient for our needs.

In our second implementation we merged the two kernels in
one kernel. One thread for each polygon to check the collision
with other polygons and calculate the response. This approach
was a little faster than the first, but still insufficient for the
general case.

In the third implementation we take advantage of the fact
that polygons that are widely separated are unlikely to overlap
any time soon, and so we can dramatically reduced the
number of polygons to be checked for collision by eliminating
those that are beyond some distance away. To do this we
add another kernel that finds the list of neighbours for each
polygon that are within the region where they might overlap
with it soon. Therefore, instead of checking the collisions with
every other object we just check with those in this list. The list
is re-created periodically, but not every time step, so that the
total number of computations is significantly reduced. This
approach is significantly faster than the other two approaches

as we see in Fig. 7 and achieves substantially better than real-
time for small ice fields. We are optimistic that through further
development and optimization we will achieve our goals for
larger ice fields.

E. Simulator Framework

Fig. 6 shows the high-level flow of the ice simulator. At
the beginning the CPU reads the ice floe data (position and
velocity) and initializes the simulation parameters. The initial
data is transferred from the CPU to the GPU. Then, the
GPU takes over the main work of the simulation. First, the
“create neighbours list” kernel is launched to find the list of
polygons that might overlap with each ice floe. Then, the “test
intersection and find collision response” kernel is launched to
determine the list of ice floes that have overlap with each ice
floe and to calculate the collision response for each ice floe.
Last, the update kernel is launched to update the position
and velocity for all ice floes. After that, the ice floes data is
transferred back to the CPU. This process is repeated until



Algorithm 1 :Intersection of convex polygons
> Assume that P and () overlap
Choose A and B arbitrarily.
repeat
if A intersects B then
The point of intersection is a vertex.
One endpoint of each of A and B is a vertex.
end if
Advance either A or B, depending on geometric con-
ditions.
until both A and B cycle their polygons
if no intersections were found then
One polygon must be entirely within the other.
end if

o
=1
3

o
o
&

=)
=1
=1

;\\;“%

=)
=1
&

o
=1
&

==p=First GPU Approach

o
o
=

=f=Second GPU Approach
Third GPU Approach

=)
=1
&

=)
=1
=1

Computation Time Per lteration (s)

o

T T T T
2600 3400 4600 6800 9000

#0f Iterations

Fig. 8.

Tesla C2050.

field which has 456 ice floes for all five different durations
(numbers of iterations). As we see in Fig. 9 we can tell that the
GPU time is much lower than the CPU time. Moreover, the
simulation is super real-time since the computation time per
iteration is less than the computation time step (At = 0.1s).

Fig. 7. Computation Time Per Iteration Of The Three GPU Approaches
For The First Ice field.

the simulation is completed.

F. Experiment Procedure

We have implemented a serial and parallel version of the
simulator and tested both versions on two different ice fields
and different (real-time) durations. The first ice field has 456
ice floes and the second one has 824 ice floes. The compu-
tation time step (At) that we have used in the simulations is
0.1s. We have used 0.1s to maintain the accuracy in the ice
mechanics. The distance of the region that we have used in
the simulations to generate the neighbor list is 70m. Finally,
we measured the speed-up (ratio of time for serial algorithm
to that for parallel algorithm).

We have used Intel(R) Xeon(R) CPU @2.27GHz (2 pro-
cessors) and a GPU Tesla C2050 card which is shown in Fig.
8. This card has 448 processor cores, 1.15 GHz processor
core clock and 144 GB/sec memory bandwidth.

III. RESULTS

Fig. 9 shows the CPU and GPU computation time per
iteration to simulate the behaviour of the ship in the first ice
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Fig. 9. Computation Time Per Iteration For The First Ice field.

Fig. 10 shows the speed up (ratio of time for serial
algorithm to that for parallel algorithm) in all five different
cases for the first ice field.

Fig. 11 shows the CPU and GPU computation time per
iteration to simulate the behaviour of the ship in the second
ice field which has 824 ice floes for all five different durations.
As we see in Fig. 11 we can tell again that the GPU time
is much lower than the CPU time. Moreover, the simulation
is super real-time since the computation time per iteration is
less than the computation time step (At = 0.1s).

Fig. 12 shows the speed up (ratio of time for serial
algorithm to that for parallel algorithm) in all five different
cases for the second ice field.

IV. RELATED WORK

There are several researchers who have developed particle
system simulation on GPUs. Kipfer et al. [13] described
an approach for simulating particle systems on the GPU
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including inter-particle collisions by using the GPU to quickly
re-order the particles to determine potential colliding pairs.
Kolb et al. [14] described a GPU particle system simulator
that provides a support for accurate collisions of particles
with scene geometry by using GPU depth comparisons to
detect penetration. A simple GPU particle system example is
provided in the NVIDIA SDK [15].

Several groups have used the GPU to successfully simulate
fluid dynamics. A couple of papers described solutions of the
Navier-Stokes equations (NSE) for incompressible fluid flow
using the GPU [16], [17], [18], [19]. Harris [20] introduced
an introduction to the NSE and a complete description of a
basic GPU implementation. Harris et al. [18] used GPU-based
NSE solutions with partial differential equations (PDEs) for
thermodynamics and water condensation and light scattering
simulation to develop visual simulation of cloud dynamics.

Fig. 12.  Speed Up For The Second Ice Field.

A simulation of the dynamics of ideal gases in two and
three dimensions using the Euler equations on the GPU was
described in [21].

Recent works shows that the rigid body simulation for
computer games performs very well on GPUs. Havok [22],
[23] explained an API for rigid body and particle simulation
on GPUs, which has all features for full collisions between
rigid bodies and particles, and provides support for simulating
and rendering on separate GPUs in a multi-GPU system.
Running on a PC with dual NVIDIA GeForce 7900 GTX
GPUs and a dual-core AMD Athlon 64 X2 CPU, Havok
FX achieves more than a 10x speedup running on GPUs
compared to an equivalent, highly optimized multithreaded
CPU implementation running on the dual-core CPU alone.

Lubbad et al. [24] described a numerical model to simulate
the process of ship-ice interaction in real-time. PhysX is used
to solve the equations of rigid body motions for all ice floes
in the calculation domain. They have validated their results
of the simulator against experimental data from model-scale
and full-scale tests. The validation tests showed a adequate
agreement between the model calculations and experimental
measurements. The goal of our work is to be able to simulate
behaviour of ice fields sufficiently quickly by using GPGPU
to allow the results to be used for planning ice management
activities, and so it is necessary to achieve many times faster
than real-time simulation.

V. CONCLUSION

The paper introduced the basics of GPGPU. The stream
processing programming model and the traditional GPGPU
approach was presented. CUDA was introduced, including
the programming model. The experiment proved performance
benefits for simulating the complex mechanics of a ship
operating in pack ice. It is clear that GPGPU has the potential
of significantly improving the processing time of highly data
parallel algorithms.




VI. FUTURE WORK

The physical models do not as yet consider driving forces
(e.g., current, wind) and don’t model floe splitting, both of
which are necessary for fully functional models and so adding
these will be a next step. Also, while the results so far
are promising, we have yet to reach the point where the
simulation is fast enough to be practically used for planning
ice management activities in realistic size ice fields. Further
development and optimization are necessary to achieve this.
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