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ABSTRACT

Before designing safety- or mission-critical real-time sys-
tems, a specification of the required behaviour of the sys-
tem should be produced and reviewed by domain experts.
After the system has been implemented, it should be thor-
oughly tested to ensure that it behaves correctly. This is
best done using a monitor, a system that observes the be-
haviour of a target system and reports if that behaviour is
consistent with the requirements. Such a monitor can be
used both as an oracle during testing and as a supervisor
during operation. Monitors should be based on the docu-
mented requirements of the system.

If the target system is required to monitor or control
real-valued quantities, then the requirements, which are ex-
pressed in terms of the monitored and controlled quantities,
will allow a range of behaviours to account for errors and
imprecision in observation and control of these quantities.
Even if the controlled variables are discrete valued, the re-
quirements must specify the timing tolerance. Because of
the limitations of the devices used by the monitor to observe
the environmental quantities, there is unavoidable potential
for false reports, both negative and positive.

This paper discusses design of monitors for real-time sys-
tems, and examines the conditions under which a monitor
will produce false reports. We describe the conclusions that
can be drawn when using a monitor to observe system be-
haviour.

Categoriesand Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Monitors; C.3 [Computer Systems Organization|: Special-
Purpose and Application-Based Systems—Real-time and em-
bedded systems
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1. INTRODUCTION

Computer systems are increasingly being used in situa-
tions where their correct behaviour is essential for the safety
of people, equipment, the environment and businesses. In
many cases there are real-time requirements on the behaviour
of these systems—failure to satisfy timing constraints is as
costly as responding incorrectly.

When designing such safety- or mission-critical real-time
systems, good engineering practice dictates that a clear, pre-
cise and unambiguous specification of the required behaviour
of the system be produced and reviewed for correctness by
experts in the domain of application of the system. Research
suggests that such reviews are more effective if the system
behavioural requirements documentation:

e expresses the required behaviour in terms of the quan-
tities from the environment in which the system oper-
ates (i.e., external to the system),

e uses terminology and notation that is familiar to, or
can be learned by, the domain experts, and

e is structured to permit independent review and appli-
cation of small parts of the document.[3]

After the system has been implemented, it should be tested
to ensure that its behaviour satisfies the requirements. In
safety-critical applications the system should be monitored
by an independent safety system to ensure continued correct
behaviour. To achieve these goals there must be a means
of quickly determining if the observed behaviour is accept-
able or not; this can be quite difficult for complex real-time
systems. Several authors (e.g., [13]) have suggested that a
practical approach to analysing the behaviour of a real-time
system is to use a monitor: a system that observes and
analyses the behaviour of another system (the target sys-
tem). Such a monitor could be used either as an ‘oracle’[16]
during system testing, or as a ‘supervisor’[11] to detect and
report system failure during operation.

This paper examines the relationship between the target
system and the monitor, in particular with respect to the
means by which the monitor observes the system behaviour,



and the impact of this on the usefulness of the monitor. It
gives some necessary conditions for monitor feasibility. In
related work [7] we have developed techniques for automat-
ically generating monitor software from a System Require-
ments Document (SRD) written in a notation that is based
on the method presented in [14], which developed from the
A-TE project at the US Naval Research Laboratory.[4]

This work focuses on monitors for computer-based sys-
tems that are intended to observe and/or control some quan-
tities external to the computer. Such quantities are often
best represented by continuous, rather than discrete, valued
functions. In particular, the requirements for any real-time
systems will include time, which we model as a continuous
variable.

The remainder of this section defines the notation and ter-
minology used in this paper. Section 2 briefly presents the
“Four Variable Model”, which relates system and software
requirements in terms of the behaviour of the input and
output devices. Section 3 formally defines a monitor and
its accuracy, and discusses possible monitor configurations.
Section 4 discusses the impact of realistic monitor input de-
vices on the conclusions that can be drawn from using the
monitor, and gives some necessary conditions that must be
satisfied in order for a monitor to be useful. The final section
draws some conclusions and suggests future work.

1.1 Notation and Terminology

There are at least two systems of interest in any applica-
tion of this work:

e The target system is the system to be monitored. Its
required behaviour is specified in the System Require-
ments Document (SRD).

e The monitor system is the system that observes the
behaviour of the target system and reports whether or
not it conforms to the SRD.

As discussed further in Section 3.2, in some configurations
these two systems may share components.

To help simplify the text, font faces and notational con-
ventions are used. These are illustrated in Table 1. The
symbol «d is used to represent “is defined as”, so, for ex-

ample “f(x) & % +5” defines the function f. The common
bracketing notation for describing an open or closed range
of real numbers is used:

[z,y] = {2 €Real|z<2z<y}
(z,y) = {z€Real|z<z<y}
(z,y) = {z€Real|z<z<y}
[z,y) = {z€Real|z<z<y}

This bracketing notation is extended to ranges of fixed-
precision numbers by replacing “” with “...”  so, for ex-
ample, [0.0...0.7] = {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7}.

1.1.1 Predicatesand Relations

For a set, R, the characteristic predicate, R, is the pred-
icate such that R(xz) is true if and only if z € R, i.e.,
R(z) & = € R. We say that the predicate R character-
izes the set R. Table 2 gives notation used for standard
operations on binary relations.
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2. THE FOURVARIABLE REQUIREMENTS
MODEL

As pointed out, e.g. in [14, 15, 17], it is important when
specifying system and software requirements to distinguish
quantities that are in the environment, i.e., external to the
system, from those that are internal to the system or ar-
tifacts of the description of either the requirements or the
design. The “Four Variable Model”, introduced in [5, 14,
15], addresses this issue and is adopted here as a framework
for describing requirements. According to this model, envi-
ronmental quantities are those that are independent of the
chosen solution and are apparent to the “customer”; they
are the best quantities to use when describing the require-
ments for the system. (The requirements for the software
alone can be expressed in terms of variables internal to the
system, see Section 2.4.) These quantities will include such
things as physical properties (e.g., temperature, pressure,
location of objects), values or images displayed on output
display devices, settings of input switches, dials etc., and
states of controlled devices.

It is widely accepted (e.g., see [4, 5, 9, 15]) that envi-
ronmental quantities can be modelled by functions of time.
Given the environmental quantities relevant to a particular
system, q1,q2, ... ,qn, of types Q1,Qz2, ... Qn, respectively,
we can represent the behaviour of the system in its envi-
ronment by an environmental state function, S : Real —
Q1 X Q2 X ... %X Qn, defined on all intervals of system oper-

ation. For convenience we define St & Q1 X Q2 X%X...XQn
(i.e., St is the set of possible environmental states).

The environmental quantities of interest can be classi-
fied into two (not necessarily disjoint) sets: the controlled
quantities—those that the system may be required to change
the value of, and the monitored quantities—those that
should affect the behaviour of the system.' Assuming that
the monitored quantities are qi,q2,...,q;, the monitored
state function, m' : Real - Q1 x Q2 X ... x Qs, is de-
rived from the environmental state function by including
only the monitored quantities. Similarly, if the controlled
quantities are g;, gj+1,---. ; gn, the controlled state function,
¢’ : Real = Qj xQj+41 X...X Qn, is derived. In this paper, a
pair of functions (m’, ¢) will denote an environmental state
function. With respect to a particular target system, M de-
notes the set of functions of type Real -+ Q1 X Q2 X...xQ;,
(type correct for a monitored state function) and C denotes
the set of functions of type Real — Qj X Qj+1 X ... X Qn
(type correct for a controlled state function).

We usually are only interested in the environmental state
function during the periods when the system is operating
(i.e., it is turned on). An environmental state function de-
fined on the (possibly infinite) time interval of a single exe-
cution of the system is known as a behaviour of the system.
A behaviour is acceptable if it describes a situation in which
the system is operating in a manner that is consistent with
the requirements.

!There may also be environmental quantities that are nei-
ther monitored nor controlled but are relevant to the design
or analysis of the system. These quantities are not relevant
to the the four-variable model and so are not considered in
this presentation.



Table 1: Fonts and Notational Conventions

[ Ttem Notation | Example |
function or predicate math roman func
standard function italicised kfunc
sequence bold seq
set math bold, capital R
characteristic predicate of R set name as predicate R(z)
tuple bracketed (x,y)
vector function of time underlined, superscript ¢. mt

Table 2: Operations on Binary Relations

domain(R) e {z | Jy,R(z,y)}

range(R) el {y | 3z,R(z,y)}

[ Operation | Definition

Domain

Range

Inverse | R™' € {(2,y) | R(y,2)}
Composition

RioR2 2 {(z,9) | 32, Ru(e,2) ARa(2,9)}

2.1 SystemRequirements

The system behavioural requirements (or, where the mean-
ing is clear from context, system requirements) characterize
the set of acceptable behaviours. Since the system is ex-
pected to observe the monitored quantities and control the
values of the controlled quantities accordingly, it is natu-
ral to express this as a relation, REQ C M x C. A be-
haviour is acceptable if and only if REQ(m?, ¢') is true. Note
that, since implementations will invariably introduce some
amount of unpredictable delay, or inaccuracy in the mea-
surement, calculation, or output of values, REQ will not be
functional for real systems, i.e., there will be more than one
acceptable ¢’ for a given m’.

In many cases REQ will be independent of the actual
date and time, and will depend only on the time elapsed
since some event (e.g., the system being turned on). In these
cases, equivalence classes of behaviours can be represented
by the behaviour formed by translation along the time axis
such that time = 0 corresponds to that event. In cases
where aspects of the date or time (e.g., day of month, hour
of day) are significant, time = 0 will need to be chosen to
correspond to an appropriate clock time and appropriate
functions defined to determine the needed quantities.

2.2 Environmental Constraints

The possible values of the environmental state function
are constrained by physical laws independent of the system

to be built. For example,
e the rate of change (or higher order derivatives) of a
quantity may be constrained by some natural laws,

e some quantities may be related to each other (e.g.,
pressure and temperature in a closed container),

e values may be only able to change in certain ways (e.g.,
positions of selector switches), or

e certain events may not be able to occur simultaneously.

These laws are described by the relation NAT C M x C,
which contains all values of (mt, g‘) that are possible in the
environment.
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2.3 SystemDesign

The environmental quantities cannot usually be directly
observed or manipulated by the system software, but must
be measured or controlled by some devices (e.g., sensors,
actuators, relays, buttons), which communicate with the
software through the computer’s input or output registers,
represented by program variables. The input quantities are
those program variables that are available to the software
and provide information about the monitored quantities.
For input quantities, 41, 42, ... ,in, of types I1,I2,... I, re-
spectively, an input state function is a function, i* : Real —
I; xI2 X ... X I,, representing the values of the input quan-
tities during system operation. Similarly, the output quanti-
ties are those program variables through which the software
can change the value of the controlled quantities. For output
quantities, 01,02, ... ,0m, of types O1,02,... ,Om, respec-
tively, an output state function is a function, o' : Real —
01 x O2 X ... X On, representing the values of the out-
put quantities during system operation. For convenience,
with respect to a particular system being specified, the set
of functions of type Real — I; x Iz x ... x I, is denoted I,
and the set of functions of type Real -+ O1 X O2X... X Om
is denoted O. The behaviour of the interface between the
environment and the software is described by the input re-
lation, IN C M x I, which characterizes the possible val-
ues of i* for any instance of m’, and the output relation,
OUT C O x C, which characterizes the possible values of
¢! for any instance of o°. This is illustrated in Figure 1.

2.4 Software Requirements

In [5] the actual software behaviour is described by the
software behaviour relation, SOF, and an expression is given
for software acceptability. In this work, as in [2], we are in-
terested in characterizing all acceptable software, so we use
the software requirements relation, SOFREQ, which char-
acterizes the set of acceptable behaviours of the software—
those pairs, (f,gt), such that any possible environmental
state function, with respect to the given input and output
devices and environmental constraints, are acceptable. This
is fully determined by REQ, IN, OUT and NAT, as fol-
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Figure 1: System Design

lows

SOFREQ &
{@.0") | (vm', ¢, (IN (m",i*) A OUT (o', ") A

NAT (m’, ")) = REQ (mt,gt))} (1)

Note that in many cases REQ (m’,c') = NAT (m',c").
Further, any observed behaviour must be in NAT, since, by
definition, behaviours not in NAT are not possible.

3. MONIT ORSFORREAL TIME SYSTEMS

Testing a real-time system typically involves running the
target system in a test environment, observing its behaviour
and comparing it to that required by its specification. Mak-
ing this comparison can be quite difficult since the require-
ments may be complex. A monitor is a system that observes
the behaviour of a system and determines if it is consistent
with a given specification. That is, an ideal monitor would
report the value of REQ (mt, gt).

3.1 Using Monitors

A monitor can be used to check the behaviour of a tar-
get system either concurrently with the target system or
post-facto, using a recording of the behaviour. In either
case, the monitor should report if all behaviours exhibited
by the target system are acceptable (i.e., in REQ). For a
given behaviour (mt,gt) on some interval [t;,ts] and any

to € (ti,tf], the prefix behaviour, (mAt,gAt), formed by con-

sidering (mt,gt) on [t;, to] only, i.e.,
(i) 2 { )0 forie

undefined otherwise

is also a behaviour of the system. Thus, if (mAt,gAf) o4

REQ the system has behaved unacceptably and the monitor
should report a failure.

This interpretation restricts these techniques to what [1]
calls safety properties—if a behaviour is unacceptable then
no extension of that behaviour is acceptable. Once a mon-
itor has detected a failure, no further analysis of that be-
haviour will give a different result. In applications such as
supervision[11], where continued analysis of the behaviour
is needed following detection of a failure, the monitor, and
presumably the target system, will need to be initialized
(i-e., a new behaviour begins).

3.1.1 Non-TestableRequiements

In [1], safety properties are distinguished from liveness
properties—those requirements such that, for a given re-
quirement and any finite duration behaviour, the behaviour
can always be extended such that it satisfies the require-
ment. These include the common notions of liveness (the
system must respond eventually) and fairness (if requested
often enough eventually a given response will occur) as well
as statistical properties on the behaviour (e.g., the aver-
age response time must be less than T'). No monitor can
determine that a target system does not satisfy such a re-
quirement, since that can only be determined using infinite
behaviours (e.g., a pending request could be serviced in the
future). For real systems, however, liveness requirements are
rarely strong enough to specify the true requirements, and
should be converted into requirements that can be checked
for finite duration behaviours (e.g., the system must respond
to requests within a fixed time limit), which can be checked
by a monitor.

3.2 Monitor Configuration

In this work, the monitor is assumed to consist of some
software running on a computer system. The monitor soft-
ware cannot, in general, observe the environmental state
function, (m’,c'), directly, but must do so through some
input devices that communicate the values of the environ-
mental quantities to input registers known as the monitor
software inputs. For monitor software inputs, si, s2,. .. , Sn,
of types S1,S2,...Sn, respectively, a monitor input state
function is a function, s’ : Real — S; x S2 X ...Sp, rep-
resenting the value of the monitor software inputs for the
periods of monitor operation. With respect to a particu-
lar monitor system, the set of all functions of type Real —
S1 X S2 X ...S, is denoted S. The behaviour of the mon-
itor input devices is characterized by the monitor input re-
lation, INmon € (M x C) X S. An environmental state
function—input state function pair is in the monitor input
relation, ((mt,gt) ,gt) € INmon, if and only if s’ is a pos-
sible monitor input state function for the environmental
state function represented by (mt,gt). Since the monitor
must observe all acceptable behaviours, it is required that
domain(INmon) 2 REQ N NAT.

The design of the monitor will determine, for each mon-
itored or controlled quantity, whether it is observed inde-
pendently of the target system (i.e., using different devices)
or observed directly from the target system software. This
results in two basic monitor configurations, in addition to
the obvious mixtures of these approaches:

Software Monitor A software monitor is a monitor that
directly observes the target system software input and
output variables, ie., st = (g't,gt), as illustrated in
Figure 2. In this case INmon is related to IN and
OUT as follows.

ouT (Q ,gt)} (2)

Software monitors include all of the monitor “architec-
tures” discussed in [12].

System Monitor A system monitor is a monitor that ob-
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Figure 2: Software Monitor

serves (mt,gt) using its own input devices as illus-
trated in Figure 3.

The monitor software determines if the target system be-
haviour is consistent with REQ under the assumption that
the monitor system’s input devices are functioning correctly,
as described in INmon. The software must take into account
the fact that INmon is usually non-functional, which we
characterize by the two extreme approaches of a pessimistic
or an optimistic monitor. A pessimistic monitor requires
that all behaviours that could have resulted in a particular
observation of the target system behaviour, s*, be in REQ,
so the monitor software determines if s is in the pessimistic
monitor relation, MONpe, which is defined as

MON,. &
{§t € range(INmon) (V (mt,gt) EM x C,
(Nimon ((m", ") ,5°) ANAT (m', "))
= REQ (mt,gt))} 3)

If MONpe(s?) is true then the behaviour is certainly ac-

ceptable, i.e., (MONpe(s')AINmon ((m’, ') ,s*)) = REQ (m', ).

A more optimistic view is to check if any behaviour that
could have resulted in s is in REQ. The optimistic moni-
tor relation, MONop, is defined as

MON,, £
{§t € range(INmon) (3 (m',c') e M x C,
INmon ((m',¢") ,5") ANAT (m', ")
AREQ (m',c))} (@)

and includes those observations that may, but do not neces-
sarily, represent acceptable behaviour. A monitor that eval-
uates MON,p will not give false negative results—reports
that an acceptable behaviour is unacceptable—but is not
appropriate for safety-critical systems since it may give false
positive results—unacceptable behaviour reported as accept-
able. The difference between MONpe and MON,p, or,
more specifically their inverse image under INpmon, is in-
dicative of the appropriateness of the monitor input devices
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Figure 3: System Monitor

as reflected in INmon. A realistic monitor may combine
these approaches, for example being pessimistic with regard
to some quantities, and optimistic with regard to some oth-
ers.

In the case of the software monitor configuration, and
neglecting impossible behaviours (i.e., (m’,c") ¢ NAT),
MONpe = SOFREQ—a software monitor determines if
the target software is behaving in an acceptable manner.

From the above definitions we can see that MON,p(s') #
MON,e(s?)—the pessimistic monitor will reject some be-
haviours that are accepted by the optimistic one. Also, if
we assume that the input devices are working, i.e., for any
observed monitor input state function, s, there is a possi-
ble corresponding environmental state function: 3 (mt, gt) €
M x C, (INmon ((mt,(_:t) ,gt) ANAT (mt,(_:t)), then the re-
verse implication holds, i.e., MONpe(s) = MON,p (s*)—if
a behaviour is acceptable using the pessimistic approach,
then it is acceptable using an optimistic approach. Both of
these are consistent with our intuition.

In cases where INmon and INmon ! are both functions
(i.e., each (mt , gt) maps to only one s¢, which can be uniquely
mapped back to (mt, gt)), and again assuming that any ob-
served monitor input state function results from a possible
environmental state function, MONpe = MON,gp. As dis-
cussed in Section 4, for real input devices and discrete time
systems, INmon and INpmen ! are both non-functional re-
lations in practice.

3.3 Accuracy

The accuracy of a monitor is determined by the set of pos-
sible false negatives, denoted FN, which is the intersection
of REQ with the set of actual behaviours that the moni-
tor may report as being unacceptable. The behaviours that
may be reported as unacceptable are those in the image of



MONe under INmon~*, as follows.

NEG £ {(m',¢') e M x C| (35’ € S, INon ((m', ') , s°)
A ﬂMONpe(gt))}

={(m',¢') eMx C| (IM (m',¢') NREQ) # 0}
(5)

where IM (mt,gt) is the image of (mt,gt) under INmon ©
INmon_l:

(,¢")) € (INmon © TNmon™") }

(6)
and thus, FN is
FN £ REQ N NEG
={(m",¢) eMxCREQ(m", ) A (7)

(IM (m,c') NREQ) # Ql}

Consider FN under the best and worst case scenarios with
respect t0 INmon. In the best case INmon is the iden-
tity relation, perfectly relaying the values of (m’,c’) to the
monitor software. In this case, IM (mt,gt) = {(mt,gt)},
NEG = REQ and FN = (—the monitor software can
detect exactly if the behaviour is acceptable or not. In
the worst case INmon iS a constant function, mapping
all values of (mt, gt) to the same value. In this case
IM (m',c') = domain(INmon), NEG = domain(INmon)
and FN = REQ—under no circumstances can the monitor
be sure that the behaviour is acceptable. In this case the
monitor will be infeasible.

DEFINITION 1. A monitor is said to be infeasible with re-
spect to a monitor input relation, INmon, system require-
ments relation, REQ, and environmental constraints, NAT,
if and only if MONpe = (.

Note that infeasibility is an extreme case: it indicates that
the monitor input devices are such that no behaviours will
be accepted. The size of FIN relative to the operational
domain is a more precise measure of monitor usefulness.

Clearly if INmon is the identity relation, then MONp. =
REQ and so, assuming a non-empty REQ, the monitor is
feasible.

For an alternative view of accuracy, consider the set of
false positives that may be reported by a monitor using the
optimistic approach defined in Eq. (4), as follows.

POS £ {(m',c') € Mx C| (3s' €8, Numen ((m', ) , ")
A MONop(gt))}

={(m',¢') | (M (', ') NREQ) # 0}
(8)

where IM is as defined in Eq. (6). The false positive set,
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FP, is thus
FP £ REQ N POS

={(m',¢") e Mx C|-REQ (m",¢) A (9)

(IM (m',¢') N REQ) # 0}

Considering the INmon scenarios from above, in the best
case FP = () and in the worst case FP = domain(INmon)—
the monitor will report all observations as acceptable be-
haviour.

For realistic cases FN and FP will be non-empty and
should be used during monitor system design to determine
if the monitor is accurate enough for the particular applica-
tion. This is discussed further in the next section.

4. PRACTICAL MONIT ORS

Practical monitors are likely to be implemented using ei-
ther general- or special-purpose digital computers. This
technology implies certain characteristics of the monitor in-
put relation, and monitor behaviour, which influence the
conclusions that can be drawn from the monitor output.
This section discusses these characteristics, and states some
conditions which must hold in order for the monitor to pro-
duce meaningful results.

4.1 Obserwation Errors

The choice of devices and/or software used by the monitor
to observe the environmental quantities is a major design
decision with respect to the monitor system. Design of a
general mechanism for observing target system behaviour in
a non-intrusive manner is beyond the scope of this work—
readers interested in that topic are referred to [10] for a
survey of the relevant literature. The following are some
factors that should be taken into consideration in choosing
monitor input devices.

Assuming that the monitor is a discrete-time system, there
are two basic approaches to observing behaviour:

e Sample (i.e., observe the instantaneous value of) the
relevant quantities at intervals.

e Modify the behaviour of the target system, and/or
the systems that interact with it, to have them notify
the monitor system of the values of relevant quantities
(mt, %, i or o) as they read or change them. Such no-
tification is assumed to include a timestamp indicating
the time at which the reported value was observed by
the target system.

4.1.1 DiscreteTime

Regardless of whether sampling or notification is used,
time can only be measured at discrete points: if sampling
is used then the sampling period determines the smallest
relevant clock increment, whereas if notification is used it is
determined by the precision of the notification timestamp.
If we assume that using the notification approach the mon-
itor receives notifications for all relevant changes, then this
approach is not significantly different from the sampling ap-
proach in which the sampling period is the precision of the
notification timestamp and uninteresting samples discarded.
Thus, the results from sampling theory (e.g., see [8]) can
be applied here to show that, for infinite duration signals
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Figure 4: Time Accuracy

(behaviours), it is sufficient to sample at twice the maxi-
mum frequency of change in the environmental quantities.
However, the monitor is typically concerned with what has
happened between the most recent two samples, and so the
discrete clock will introduce some error in the perceived time
of events, which is referred to as the time error. For real-
time systems, errors in measuring time are particularly im-
portant.

Consider the behaviours illustrated in Figure 4, in which
the values of m and ¢ represent that a condition of, respec-
tively, a monitored and controlled quantity is either false
(low) or true (high). Similarly, the values of s.m and s_c
represent the values as they appear to the monitor software
and the shaded regions represent the image of these changes
under INmon~!. Let dmon Tepresent the monitor sampling
interval (i.e., m; —m;—_1) and d be the elapsed time between
the change in m and ¢, as illustrated. Assuming that the
change in c is a correct target system response to the change
in m, consider the two cases illustrated.

a) The monitor sees distinct changes. The monitor can
determine only that 0 < d < 2dmon. This behaviour
will be rejected (considered unacceptable) if the speci-
fied maximum delay for that change is less than 2dmon .
This results in Condition 1, below.

CONDITION 1. The mazimum time error introduced
by the monitor input devices must be less than
%min(Delay), where Delay is the set of mazimum
delay tolerances for the dependent® quantities given in
the SRD.

b) The monitor sees simultaneous changes. Here the mon-
itor can determine that —dmon < d < dmon (i€, ¢
could change before m); hence this behaviour will be
rejected if ¢ is only permitted to change following m.
The implication is that dmen must be less than the
minimum response time of the target system. This
constraint can be weakened, however, by noting that,
in order for the target system to have responded to the
change in m, it must have observed its value between
the changes in m and ¢, so this case can be avoided
by ensuring that the monitor samples in that inter-
val as well. Thus we have Condition 2, below, which
can be satisfied by ensuring that sampling by the tar-
get and monitor systems is synchronized to within the

2A quantity ¢ is dependent on m if the value of ¢ may be
required to change as a result of a change in the value of m.
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Figure 5: Quantization and Error

minimum target system response time. If event notifi-
cation from the target system is used, the monitor and
target systems are assured to be synchronized.

CONDITION 2. The mazimum difference between the
time error in the target system and the time error in
the monitor system for the same event must be less
than the minimum time in which the target system
might respond to that event.

A monitor system that does not satisfy Condition 1 will be
infeasible. A system that does not satisfy Condition 2 may
give false negative results for target systems responding too
quickly.

4.1.2 Quantizationand Measuementrror

As with time, other values observed by the monitor soft-
ware must be of finite precision, so Real valued environmen-
tal quantities must be quantized, such that, for example,
discrete value v; represents all continuous values, z, such
that I; < x < h;. Whereas time is continuously increasing,
so we know something about the error, other quantities do
not necessarily have this property. As illustrated in Fig-
ure 5, if the quantization is perfect, i.e., h; = l; 41, the worst
case error is half the quantization step size, h; — l;, and no
non-determinism is introduced. Practical devices will ex-
hibit some measurement error in addition to quantization,
so the actual error will be larger, and INmon will be non-
functional.

For a monitor to be feasible, there must be some mon-
itor input state functions, s’, for which all images under
INmon ! are acceptable. Because of the variety of ways
that quantities may be used in the SRD, we cannot state
generally applicable conditions on INmon that will ensure
that a monitor is feasible. Condition 3 is a necessary, but
not sufficient condition for feasibility.

CONDITION 3. The mazimum error in observing a par-
ticular controlled quantity must be less than the difference
between the mazimum and minimum values of that quantity
permitted by REQ.
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4.2 Non-determinism

As mentioned in Section 2.1, practical requirements doc-
uments will be non-functional to allow for unpredictable de-
lays or errors in calculation or measurement. In particular,
if the target system is to be implemented using a discrete-
time system, then, for some small time, r, REQ must allow
events that occur within r of each other to be treated as
either a single event (i.e., simultaneous) or distinct events
(i-e., non-simultaneous). The time r is known as the time
resolution for the target system.® The monitor system must
take this non-determinism into account when evaluating be-
haviour.

Consider the behaviour illustrated in Figure 6, and the
target time resolution as indicated. The requirements must
allow the changes in C1 and C2 to be treated as either si-
multaneous or not in both cases illustrated. Assuming that
the monitor system samples at the indicated times, it will
observe the changes either simultaneously or not, but can
certainly tell that they occurred within 2§,,0n, of each other.
If dmon is less than half the time resolution required for the
target, which is required to satisfy Condition 1, then in both
cases all images of s* under INmon ' allow the changes to
be interpreted as happening in either order or simultane-
ously, so MONy. accepts a behaviour in which the target
system interprets them in either way. The monitor software
must take this non-determinism into account.

In the case of the software monitor configuration, as il-
lustrated in Figure 2, the monitor software and the target
system software are assured to see the same values (i.e.,
st = (it,gt)), so the monitor implementation can require
deterministic behaviour.

4.3 Responselime

Clearly the delay introduced by the monitor input devices
will impose a lower limit on the monitor response time—the
maximum time between a failure occurring and the mon-
itor reporting it—since a monitor cannot report a failure
before it is evident in st. The choice of input devices can
also affect the amount of processing required by the monitor
software, which will also affect response time, although less
predictably so. For example, input devices may be available
that can directly report the value of relevant conditions (e.g.,
sensors to detect if a robot has touched a wall) whereas a
different choice of input devices would require that the mon-
itor software perform some, possibly expensive, calculations
(e.g., search a list of wall locations to determine if the robot

3Readers are referred to [7] for a further discussion of time
resolution.
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is touching any).

4.4 Computational Resources

Using any notation that is expressive enough to describe
realistic target system requirements, it is certainly possi-
ble to express requirements such that MONpe(s?) is either
not computable, or is computable only using an impractical
amount of computational resources. Some possible causes
of this are:

e REQ (m’,c") or NAT (m’,c') may not be practically
computable. As in [6], this may result from spec-
ification errors such as infinite recursions in func-
tion or predicate definitions, or from computation of
MON,¢(s') requiring quantification over large sets.
Specification authors must take care to avoid these sit-
uations, if possible.

e IN,0n may be such that the pre-image of s* is not eas-
ily computed. Since real-valued monitored and con-
trolled quantities are permitted, the pre-image of s'
will often be infinite, but, for most practical input de-
vices, will be easily described by simple predicates,
characterizing a range of possible values, for example.
If this is not the case, however, it may be impracti-
cal to determine if all elements of the pre-image are
acceptable.

Careful review of the SRD and judicious choice of monitor
input devices may help to avoid these situations.

5. CONCLUSIONS

This paper presents a precise definition of a monitor for
a real-time system, and identifies some necessary conditions
for a monitor to be feasible and useful. These conditions
can be used to help determine if a particular monitor design
is sufficient for the target system.

Monitors, such as described in this work, are well suited to
automated testing of systems, where they function as an ora-
cle, reporting if the behaviour is acceptable or not. This ap-
plication offers significant improvement over non-automated
testing since test cases can be evaluated quickly and errors
in behaviour are quickly and reliably detected.

In a similar way, monitors can be used as supervisors to
observe the behaviour of the target system in operation and
report failures as they occur. Such a supervisor could be
used as a redundant safety system to initiate corrective or
preventative action when a failure is detected.

5.1 Future Work

We have validated this work using a few software moni-
tors that were automatically generated from system require-
ments documentation.[7] Further study, using different tar-
get systems and using the system monitor configuration dis-
cussed in Section 3.2 would undoubtedly lead to new insight.

Further work is also needed to enhance techniques for
specifying the behaviour of input and output devices, and
to develop analysis techniques that will permit designers to
easily determine if a particular set of monitor input devices
is sufficient for the monitoring task at hand.
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