
An Improved Feature Extraction Technique for High Volume Time Series Data

Jonathan S. Anstey and Dennis K. Peters
Electrical and Computer Engineering

Memorial University of Newfoundland
St. John’s, NL Canada A1B 3X5
{anstey, dpeters}@engr.mun.ca

Chris Dawson
INSTRUMAR Limited

St. John’s, NL Canada A1B 4A5

Abstract

The field of time series data mining has seen an explo-
sion of interest in recent years. This interest has flowed
over into many applications areas, including fiber manu-
facturing systems. The volume of time series data gener-
ated by a fiber monitoring system can be huge. This limits
the applicability of data mining algorithms to this problem
domain. A widely used solution is to reduce the data size
through feature extraction. Four of the mostly commonly
used feature extraction techniques are Fourier transforms,
Wavelets, Piecewise Aggregate Approximation, and Piece-
wise Linear Approximation (PLA). In this paper, we first
empirically demonstrate that PLA techniques produce the
highest quality features for this problem domain. We then
introduce a novel PLA algorithm that is shown to produce
higher quality features than any other currently available
techniques.

1. Introduction

The field of time series data mining has seen an explo-
sion of interest in recent years. Researchers in this field
are typically faced with two related problems: many data
mining algorithms have a high time complexity and time
series databases are often very large. Together, these prob-
lems make practical use of data mining technologies such
as novelty detection in time critical systems difficult. The
solution is to either reduce algorithm complexity or reduce
data size. Much work has been devoted to both problems in
the data mining community. We will focus on the aspect of
reducing data size.

Reducing data size is often referred to as the process
of feature extraction. Simply put, feature extraction is the
process of identifying important data features while remov-
ing unimportant ones. Features could be actual data points,
statistics on several data points, lines, clusters, or even co-
efficients of functions. The goal is to end up with fewer

features than original data points so that data mining algo-
rithms can run in a reduced amount of time.

Many feature extraction techniques have been proposed
for time series data mining, including Fourier/Wavelet
transforms [1, 18], Singular Value Decomposition (SVD)
[20], Adaptive Piecewise Constant Approximation (APCA)
[8], Symbolic Mappings [13, 17], Piecewise Aggregate Ap-
proximation (PAA) [9, 22], and Piecewise Linear Approxi-
mation (PLA) [10, 11, 16, 6]. In this paper, we will evaluate
the four most popular techniques on datasets from an in-
dustrial synthetic polymer fiber monitoring application [3].
Synthetic polymer fiber (hereafter referred to as fiber) in
this application is used to make carpet and other industrial
fibers. Our motivation for evaluating these techniques here
is to use the best technique for data preprocessing in a fiber
property novelty detection application [2]. Time series nov-
elty detection is an active area of data mining research and
to our knowledge has not been applied to a fiber monitoring
application.

The main result of these experiments is that the PLA ap-
proach produces the highest quality features at all compres-
sion levels tested. This motivated us to create a new PLA al-
gorithm that produces higher quality features than all other
currently available techniques on fiber property datasets.

The remainder of the paper is organized as follows. In
Section 2, we describe the major feature extraction tech-
niques and the optimizations used. In Section 3 we empir-
ically evaluate the techniques and show that PLA methods
produce the highest quality features. In Section 4 we detail
our new PLA algorithm and validate its results. We con-
clude in Section 5 with a summary and directions for future
work.

2. Related Work

Many feature extraction algorithms have been presented
in the literature. The purpose of these algorithms is to re-
duce data size while keeping only the important details in-
tact (i.e., the data features). In this section, we discuss the



Original Data

Daubechies-4 Wavelet

Fourier

Bottom-Up PLA

PAA

Figure 1. Major feature extraction techniques
reducing a 512 point sample to 20 points.

four most popular feature extraction techniques that have
been used for time series data mining. Figure 1 shows these
techniques in action. We refer the interested reader to works
by Keogh et al. [7, 13] for a more extensive survey of fea-
ture extraction techniques.

For the purposes of our experimentation, all techniques
will need to reduce a time series of lengthn to N data
points. Data points include anything required to store the
compressed representation; this includes actual values, in-
dices, or other bookkeeping data.

Table 1 contains the notation used throughout this paper.

2.1. Discrete Fourier Transform

The first technique presented to the time series data min-
ing community for data reduction was the Discrete Fourier

Table 1. Notation used in this paper
Symbol Definition

~x A time ordered series of real values.
n The length of~x.

xi, x[i] Theith value of~x where0 ≤ i < n.
~X A vector of features.
N The length of~X plus any bookkeep-

ing data.
Cratio The compression ratio,Cratio = N

n .
maxError The maximum distance between an

approximating line and the corre-
sponding points in~x.

merge(s1, s2) Returns a new segment consisting of
the first point of segments1 and the
last point of segments2 .

error(s, t) Returns the distance between an ap-
proximating segments and the origi-
nal time seriest .

Transform (DFT) [1]. The DFT breaks down a time series
of lengthn inton sine/cosine waves, which when composed
together form the original signal. Each wave is represented
by a single complex number, known as a Fourier coefficient.

The DFT of a time series~x = [t = 0, ..., n− 1|xt]
is defined as a sequence of complex coefficients~X =
[f = 0, ..., n− 1|Xf ], represented by

Xf =
1√
n

n−1∑
t=1

xt exp
(
−i2πft

n

)
wherei is the imaginary uniti =

√
−1 andf = 0, ..., n− 1

[1]. ComputingXf directly is aO(n2) operation. Fortu-
nately,Xf can be computed inO(n log n) time by the Fast
Fourier Transform (FFT) algorithm.

Referring back to Figure 1, the Fourier result shown is
not a direct plot of~X. All plots shown are time domain
signals reconstructed from the feature vector~X (which is in
the frequency domain).

One may notice that the resulting data size after the DFT
is 2n. This is because each complex number needs two val-
ues for storage: one real and one imaginary. By taking ad-
vantage of the symmetric property of the DFT [9], half of
the resultant coefficients can be discarded. This still leaves
us with the same data size as we started with. The ability to
compress data comes from the fact that for most data sets,
many coefficients contribute little to the reconstructed sig-
nal and can be discarded. Another useful property of the
DFT is that the Euclidean distance between two time series
in the frequency domain is the same as in the time domain
[1]. This allows all data mining operations to be performed
in the much smaller feature domain.



Since the DFT essentially measures the global frequency
content of the signal, it does not preserve localized time do-
main events. That is, elements that occur at a specific time
and do not repeat are lost in the transformation. As a re-
sult, processing large time series with the DFT is expected
to produce poor approximations.

In Agrawal’s paper [1], he describes the process of dis-
carding Fourier coefficients as simply removing all but the
first few. However, the lower frequencies that are kept
in this scheme may not always be the frequencies that
contribute most to the signal. A technique proposed by
Mörchen [15] describes keeping only the largest coeffi-
cients; this results in the most energy preservation from
the original signal. Using this scheme, the resulting coef-
ficient array will most likely be sparse and value indices
will need to be stored. This means that fewer coefficients
can be stored to make room for indices. After some ex-
perimentation on fiber property datasets, we discovered that
keeping the first few coefficients actually produced higher
quality features than the technique proposed by Mörchen
[15]. This is perhaps due to the higher number of coeffi-
cients retained in Agrawal’s approach. Thus, we will use
Agrawal’s approach of removing all but the first few coeffi-
cients.

2.2. Discrete Wavelet Transform

Like the DFT, the Discrete Wavelet Transform (DWT)
converts a time domain signal into a frequency domain sig-
nal, represented by a set of coefficients. Instead of using
sine/cosine waves to reconstruct a signal, the DWT uses
many scaled and/or shifted versions of a function called the
mother wavelet [15]. Low frequency versions of the mother
wavelet model the global contributions of a signal while
high frequency versions model local events in a signal [5].
In this way, data features that are localized to a specific time
can be represented as wavelet coefficients. This is a contrast
to the DFT, which can only model global contributions to
the signal. This fact, along with its low time complexity of
O(n) [14], has made the DWT a choice feature extraction
technique for many data mining applications [12].

The DWT of a time series~x results in a sequence of real
coefficients ~X. Like the DFT, many of these coefficients
contribute little to the overall signal and can be removed.
Therefore, the compression scheme we used for the DFT
was also used for all DWT experiments in this paper.

There are many mother wavelet functions to choose
from, with each emphasizing different aspects of a signal.
The most commonly used wavelet function for the purposes
of data mining is the Haar wavelet [21, 18]. Popivanov et
al. also note that wavelet functions such as Daubechies [4]
may perform better for certain datasets [19]. As a result, in
this paper we will use two types of wavelet functions: the

Haar and Daubechies-4 wavelets. The Haar transform will
be referenced as HWT (theHaarWaveletTransform) and
the Daubechies transform will be referenced as DWT (the
DaubechiesWaveletTransform).

2.3. Piecewise Aggregate Approximation

The simple, yet powerful, Piecewise Aggregate Approxi-
mation (PAA) technique was first applied to time series data
mining by Keogh et al. [9] and Yi et al. [22]. It has been
used before in other fields under names such as span-based
averaging or simply averaging. The basic idea of this ap-
proach is to first divide the input sequence~x of lengthn into
N equal sized segments.N is determined by the amount
of data compression needed. The mean of each segment is
then used as a data feature in the resultant series~X, which
is calculated using the following equation

~X = [mean(~s1), ...,mean(~sN )]

where~s is the input sequence~x divided intoN equal sized
segments. Due to the simplicity of this method, it has a time
complexity ofO(n). This makes it particularly attractive for
large data sets.

2.4. Piecewise Linear Approximation

Keogh et al. make the suggestion that Piecewise Linear
Approximation (PLA) is perhaps the most used feature ex-
traction technique in time series data mining [10]. The basic
idea of this approach is to approximate the input sequence
using a desired number of straight lines, which we call seg-
ments. Since the number of segments is typically much
smaller thann, a high level of compression can be achieved.

PLA techniques can be generally classified into three
categories:

• Sliding Window: A window is grown until a specified
error threshold is reached. Even though this method
produces relatively poor results, it is heavily used for
its online capability. Online algorithms are able to
process data in a piece-by-piece fashion, without hav-
ing the entire dataset available initially. This is con-
trasted to offline or batch algorithms which need the
entire dataset initially.

• Top-Down: Starts initially by approximating the en-
tire time series with one segment. It then recursively
partitions the segment until all segments fall within a
specified error threshold. Without any modifications,
this algorithm processes data in an offline fashion.

• Bottom-Up: Starts initially with the finest grain
approximation possible (i.e., essentially the original



Listing 1. The Bottom-Up Segmentation
(BUS) algorithm

TimeSeries BottomUp(TimeSeries T, double maxError)
{

Segment[] segments;
double [] mergeCost;
int i;

for (i = 0; i < T.Length; i += 2)
segments[i / 2] = new Segment(T[i], T[i + 1]);

for (i = 0; i < segments.Length; ++i)
{

Segment approxSegment = merge(segments[i],
segments[i+1]);

mergeCost[i] = error(approxSegment, T);
}

while (min(mergeCost) < maxError)
{

i = indexOfMin(mergeCost);
segments[i] = merge(segments[i], segments[i+1]);
remove(segments[i+1]);
mergeCost[i]= error(merge(segments[i], segments[i

+1]), T);
mergeCost[i-1]= error(merge(segments[i-1],

segments[i]), T);
}

return new TimeSeries(segments);
}

data). It then iteratively merges segments until some
error threshold is met. This algorithm also processes
data offline.

For all techniques, approximating lines can be calculated
in a variety of ways. To keep computational complexity low,
in this work, lines are calculated using linear interpolation
(i.e., use the first and last points of the segment as the ap-
proximating line).

As identified by Keogh et al., no PLA technique is best
for all data sets [7]. However, the Bottom-Up approach is
generally considered the best overall and is the technique
that will be used for all experiments in this paper. It has a

time complexity ofO
(
n n

N−1

)
, whereN − 1 is the num-

ber of segments [10]. Pseudo code for the genericBottom-
Up Segmentation (BUS) algorithm is shown in Listing 1
(adapted from [10]). In this code listing,~X is essen-
tially the return value of theBottomUp routine (i.e.,~X =
BottomUp( ~x, maxError) ).

With little modification, the BUS algorithm can accept
N as a parameter, instead ofmaxError. While this is de-
sirable, we will usemaxError to better support compari-
son with our new technique in Section 4.

Combinations of the three PLA techniques have been
proposed before as well. For instance, Keogh et al. have
combined the Bottom-Up approach with the Sliding Win-
dow approach [10]. This novel technique produced features

similar in quality to Bottom-Up with the addition of online
support. Since it still did not outperform Bottom-Up, we
will not include it here.

3. Empirical comparison of major feature ex-
traction techniques

In this section we will present a detailed empirical com-
parison of the major feature extraction techniques described
in Section 2. As stated before, the experimentation will
be done on data from an industrial synthetic polymer fiber
monitoring system; namely, the AttalusTM Fiber System
[3]. This system uses an electromagnetic field to measure
numerous properties about the fiber being produced. We
will focus on the Magnitude data property which corre-
sponds closely with fiber quantity. Eleven datasets will be
tested ranging in size from 256 to 1024 points. All datasets
are normalized to produce a mean of zero and standard de-
viation of one. These datasets were not chosen arbitrarily;
they all contain anomalous patterns of fiber quantity. Re-
taining such anomalous patterns in the reduced represen-
tation is a critical goal of this work for the intended nov-
elty detection application [2]. Figure 2 illustrates the eleven
datasets used.

3.1. Methodology

To evaluate the suitability of each feature extraction tech-
nique, we will adopt a procedure similar to the one used by
Keogh et al. [7]. This procedure essentially measures the
reconstruction error for a fixedN , where lower reconstruc-
tion error implies higher feature quality. Keogh et al. use
the simple Euclidean distance function as a measure of the
reconstruction error (see Table 1 for notation)

error(~x, ~X) =

√√√√ n∑
i=0

(xi −Xi)2

wheren = N . However, in all cases whereCratio > 0, n
is greater thanN so this formula will not work. In addition,
points in the original and reconstructed time series will not
necessarily ‘line up’ along the time axis. In our scheme, in-
terpolation is used to find the distance between a point and
a line in the reconstructed time series. We call this distance
metric thetime aligned Euclidean distance. This is illus-
trated in Figure 3. Note that in this work, the time that a
data event occurs is important.

For each value ofCratio tested, a technique must pro-
duceN data points. For example, forCratio = 20% a
n = 1000 point sample would be reduced toN = 200
points. The various techniques are tuned to produceN re-
sultant data points from a specifiedCratio as follows:



Time

M
a
g
n
it
u
d
e

Figure 2. The eleven datasets used in the experiments. Each dataset is a recording of the Magnitude
data property over time.

A

B

D
1

D
n

Time

M
a
g
n
it
u
d

e

Interpolated point

Figure 3. When all points do not line up, in-
terpolation can be used to find the distance.
In the above case, the total distance would
be

√
D2

1 + ... + D2
n. Where B is the input se-

quence and A is the reduced representation.

• DFT: N = Cratio∗n
2 , the firstN coefficients are used.

• DWT, HWT : N = Cratio ∗ n, like the DFT, the first
N coefficients are used.

• PAA: N = Cratio ∗ n, ~x is divided intoN segments
of length n

N .

• BUS: N is the number of resulting data points (i.e.,
N − 1 segments) from the BUS algorithm on a pre-

calculated maximum error (maxError). maxError
is defined as the maximum time aligned Euclidean
distance allowed between a segment and the original
data. ThemaxError value that producesN data
points is calculated by a separate utility that searches
maxError values in increments of 0.0001, starting
from zero.

We note that the method of calculatingmaxError val-
ues for the BUS algorithm is computationally expensive.
This method is only used to facilitate uniform comparison
with the other feature extraction techniques. Not all tech-
niques supportmaxError as a parameter, therefore we
must resort to such a procedure. In practice,maxError
would be set to a fixed value andN would vary accordingly.

Since we are only concerned with the relative quality of a
particular technique, we normalize all results by dividing by
the worst technique. The technique with the lowest quality
for a particularCratio has the highest reconstruction error.

3.2. Results

The results of the experiments are summarized in Figure
4. One can readily see that the DFT performs very poorly
at all levels of compression. This is most likely due to its
inability to preserve the high number of local events in fiber
property data.

PAA, DWT, and HWT perform similarly at all compres-
sion levels and were generally much better than DFT. None
performed better than BUS at any point.

The main result here is that the BUS technique produced
the highest quality features at all levels of compression.



4% of original data size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PAA BUS DFT DWT HWT

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

10% of original data size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PAA BUS DFT DWT HWT

20% of original data size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PAA BUS DFT DWT HWT

50% of original data size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PAA BUS DFT DWT HWT

Figure 4. A comparison of the major feature extraction techniques on eleven fiber property datasets.
Each histogram bar represents the sum of the reconstruction errors for each dataset.

4. Enhancement to the BUS technique

The results from the previous section clearly show that
BUS produced the highest quality features in fiber property
data. It also has a reasonable time complexity which allows
it to be applied to much larger datasets. This motivated us
to find further improvements to the BUS technique.

Upon examination of the features produced by BUS, we
noticed that many data points appeared to be redundant.
That is, many data points lay on a nearly straight line and
thus did not add much value. These points exist because of
the BUS algorithm’s initial segmentation. Recall that ini-
tially, each segment has a length of two and so all merged
segments will have an even length. However, a segment
may be best represented by an odd number of data points.
This was identified as a possible area for improvement by
Keogh et al. [10]. To our knowledge no such improvement
has been made.

To improve upon this situation we introduce a new algo-
rithm based on BUS that removes these redundant points.
We call our new algorithm IBUS (ImprovedBottom-Up
Segmentation).

4.1. The IBUS algorithm

The IBUS algorithm essentially adds a post-processing
step to the BUS algorithm. Thus, it first calls the BUS al-
gorithm to determine an initial data segmentation. It then
scrolls through the BUS data, discarding points that when
removed, keep the error belowmaxError. This can also
be described as removing points that lie on a straight line.

This process is implemented by looking at 3 points per
iteration, and evaluating whether the approximation formed
by the1st and3rd points have less error thanmaxError. If
the approximation is below themaxError threshold, then
the 2nd point is removed from the BUS data. The pseudo
code for this procedure is shown in Listing 2.

Listing 2. The Improved Bottom-Up segmen-
tation algorithm

TimeSeries ImprovedBottomUp(TimeSeries T, double
maxError)

{
TimeSeries resultSeries = BottomUp(T, maxError);

for ( int i = 1; i < resultSeries.Length - 1; ++i)
{

Segment approx = new Segment(resultSeries[i - 1],
resultSeries[i + 1]);

if (error(approx, T) <= maxError)
{

remove(resultSeries[i]);
i--;

}
}

return resultSeries;
}

Scrolling through the data takes justO(N) time and if
the underlying time series is implemented as a heap, re-
movals take justO(log N) time [10]. Calculation of the re-
construction error is constant at each iteration. In the worst
case, if every iteration produces a removal, the complexity
would beO(N log N). This case is highly unlikely (if not
impossible) because the BUS algorithm would need to pro-
duce a straight line with all data points lying on it. It is
easily seen that the BUS algorithm can not produce such an
approximation in any non-trivial case. So the actual com-
plexity is expected to be closer toO(N). In addition, since
N is much less thann, even in the worst case the additional
complexity of IBUS is negligible.

4.2. Comparison

We repeated all experiments in Section 3, now includ-
ing the new IBUS algorithm. Since BUS performed best



B
U

S

B
U

S

B
U

S

B
U

S

IB
U

S

IB
U

S IB
U

S

IB
U

S

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

4% 10% 20% 50%

Cratio

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

Figure 5. A comparison of the relative recon-
struction errors of the BUS and IBUS algo-
rithms.

last time, we will compare IBUS relatively to BUS. The
maxError for IBUS is calculated in the same way as BUS.
So both algorithms may have differentmaxError values.
As shown in Figure 5, for our application IBUS produced
higher quality features than BUS at every level of compres-
sion. These results are normalized values obtained by divid-
ing by the worst technique. The largest difference between
the two methods occurred at 4% of the original data size
(i.e., the highest compression level). At this level, IBUS had
only half of the reconstruction error that BUS had. As the
compression level is decreased, the benefits of using IBUS
also decreased. It is suspected that as the compression ra-
tio approaches 100% (i.e., no compression), BUS and IBUS
will produce identical results.

In further experiments, we compared how much data re-
duction IBUS achieves over BUS for the samemaxError.
This is necessary to rule out any benefits derived from the
maxError searching utility described in Section 3.1. This
also allows us to show the percent improvement for replac-
ing an already deployed BUS solution with IBUS. The BUS
maxError values from the previous experiments are used
here for both BUS and IBUS. Figure 6 shows the results of
these experiments. At eachCratio, IBUS reduces the data
size considerably more than BUS. IBUS data size ranged
from 61-68% of the BUS data size.

We reiterate that these claims are for fiber property
datasets only. However, since no domain knowledge was
used in the development of IBUS, it should be applicable to

B
U

S

B
U

S

B
U

S

B
U

S

IB
U

S

IB
U

S IB
U

S

IB
U

S

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

4% 10% 20% 50%

Desired Cratio

A
c
tu

a
l 
C

ra
ti
o

Figure 6. A comparison of the BUS and
IBUS algorithms with a fixed maxError. In
every case IBUS reduces the data size with-
out reducing quality by removing redundant
points.

other domains as well.
While it is obvious how IBUS can lower data size by

removing redundant points, it may be unclear as to how
feature quality can be improved by this process. The im-
proved feature quality comes from that fact that IBUS starts
out with a higher quality BUS segmentation (i.e., lower
maxError) and removes only redundant points to achieve
a data size ofN . This is contrasted to BUS which needs a
highermaxError to get the desiredN points. The result
is that IBUS has similar quality to BUS with a largerN .

5. Conclusions and Future Work

In this work we have shown that PLA methods produce
the highest quality features for fiber property datasets. We
also introduced a new PLA algorithm (IBUS) which, for our
application produced the highest quality features and con-
siderably more data reduction than all currently available
feature extraction techniques.

Future work will include evaluating the IBUS algorithm
on more diverse datasets and applying it to other BUS based
algorithms. One such algorithm mentioned earlier is a com-
bination of the Sliding Window and Bottom-Up PLA ap-
proaches [10]. Also, in other related work we intend to
evaluate several leading time series novelty detection meth-
ods using each of the feature extraction methods described



here.

6. Acknowledgments

The authors gratefully acknowledge the funding support
provided by INSTRUMAR Limited, the Natural Sciences
and Engineering Research Council of Canada (NSERC),
and the Atlantic Canada Opportunities Agency (ACOA)
through the Atlantic Innovation Fund (AIF).

References

[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient simi-
larity search in sequence databases. InFODO ’93: Proceed-
ings of the 4th International Conference on Foundations of
Data Organization and Algorithms, pages 69–84, London,
UK, 1993. Springer-Verlag.

[2] J. Anstey, D. Peters, and C. Dawson. Discovering novelty
in time series data. InNECEC ’05: Proceedings of the 15th
Annual Newfoundland Electrical and Computer Engineer-
ing Conference, 2005.

[3] M. Chan. New online fiber sensor technology unlocks value
in fiber manufacturing.International Fiber Journal, Decem-
ber 2000.

[4] I. Daubechies. Ten lectures on wavelets. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA,
1992.

[5] A. Graps. An introduction to wavelets.IEEE Computational
Science and Engineering, 2(2):50–61, 1995.

[6] J. Hunter and N. McIntosh. Knowledge-based event detec-
tion in complex time series data. InAIMDM ’99: Proceed-
ings of the Joint European Conference on Artificial Intel-
ligence in Medicine and Medical Decision Making, pages
271–280, London, UK, 1999. Springer-Verlag.

[7] E. Keogh and S. Kasetty. On the need for time series data
mining benchmarks: a survey and empirical demonstration.
In KDD ’02: Proceedings of the eighth ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pages 102–111, New York, NY, USA, 2002. ACM
Press.

[8] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzani.
Locally adaptive dimensionality reduction for indexing large
time series databases. InSIGMOD Conference, pages 151–
162, 2001.

[9] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra.
Dimensionality reduction for fast similarity search in large
time series databases.Knowledge and Information Systems,
3(3):263–286, 2001.

[10] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An on-
line algorithm for segmenting time series. InICDM ’01:
Proceedings of the 2001 IEEE International Conference on
Data Mining, pages 289–296, Washington, DC, USA, 2001.
IEEE Computer Society.

[11] V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen,
and J. Allan. Mining of concurrent text and time series. In
The 6th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining Workshop on Text Mining,
pages 37–44, Boston, MA, USA, 2000.

[12] T. Li, Q. Li, S. Zhu, and M. Ogihara. A survey on wavelet
applications in data mining.SIGKDD Explorations Newslet-
ter, 4(2):49–68, 2002.

[13] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic rep-
resentation of time series, with implications for streaming
algorithms. InDMKD ’03: Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and
knowledge discovery, pages 2–11, New York, NY, USA,
2003. ACM Press.

[14] S. G. Mallat. A Wavelet Tour of Signal Processing. Acad-
emic Press, 1999.

[15] F. Mörchen. Time series feature extraction for data mining
using DWT and DFT. Technical Report 33, Department of
Mathematics and Computer Science, University of Marburg,
Germany, 2003.

[16] S. Park, S.-W. Kim, and W. W. Chu. Segment-based ap-
proach for subsequence searches in sequence databases. In
SAC ’01: Proceedings of the 2001 ACM symposium on
Applied computing, pages 248–252, New York, NY, USA,
2001. ACM Press.

[17] C.-S. Perng, H. Wang, S. R. Zhang, and D. S. Parker. Land-
marks: A new model for similarity-based pattern querying in
time series databases. InICDE ’00: Proceedings of the 16th
International Conference on Data Engineering, page 33,
Washington, DC, USA, 2000. IEEE Computer Society.

[18] K. pong Chan and A. W.-C. Fu. Efficient time series match-
ing by wavelets. InICDE ’99: Proceedings of the 15th
International Conference on Data Engineering, page 126,
Washington, DC, USA, 1999. IEEE Computer Society.

[19] I. Popivanov and R. J. Miller. Similarity search over time-
series data using wavelets. InICDE ’02: Proceedings of the
18th International Conference on Data Engineering, page
212, Washington, DC, USA, 2002. IEEE Computer Society.

[20] D. Wu, A. Singh, D. Agrawal, A. E. Abbadi, and T. R.
Smith. Efficient retrieval for browsing large image data-
bases. InCIKM ’96: Proceedings of the fifth interna-
tional conference on Information and knowledge manage-
ment, pages 11–18, New York, NY, USA, 1996. ACM Press.

[21] Y.-L. Wu, D. Agrawal, and A. E. Abbadi. A comparison of
dft and dwt based similarity search in time-series databases.
In CIKM ’00: Proceedings of the ninth international con-
ference on Information and knowledge management, pages
488–495, New York, NY, USA, 2000. ACM Press.

[22] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for
arbitrary lp norms. InVLDB ’00: Proceedings of the 26th
International Conference on Very Large Data Bases, pages
385–394, San Francisco, CA, USA, 2000. Morgan Kauf-
mann Publishers Inc.


