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Abstract— We present a process for detecting concern interac-
tions in Aspect-Oriented (AO) designs expressed in the UML and
our domain specific weaving rule specification language (WRL).
The process consists of two tasks: 1) A light-weight syntactic
analysis of the AO model to reveal advice overlaps (e.g. instances
where multiple advice applies to the same join point) as potential
sources of interaction. 2) Verification of desired model properties
before and after weaving to confirm/reject findings of task 1
and/or to reveal new interactions. At the heart of task 2 is a
weaving process that maps an unwoven Aspect-Oriented model
to a behaviourally equivalent woven Object-Oriented model.

I. INTRODUCTION

A. The Aspect-Oriented Paradigm

Separation of concerns (SOC) is the ability to deal with
systems one concern at a time. With ideal SOC one can de-
velop, test, and modify system concerns in isolation and evolve
systems to handle new concerns without changing existing
parts of the system. In 1972, Parnas suggested that this ideal
can be approached through the technique of modularization
[1]; that is, localizing each concern in a module. Over the
years, programming paradigms have emerged to help devel-
opers achieve better SOC by providing better modularization
mechanisms. The Object-Oriented (OO) paradigm is currently
the most popular; its primary unit of modularity, the class,
improves SOC by grouping together data and behaviour related
to a single concern; however not all concerns of a system can
be simultaneously localized in classes. Often in OO systems,
concerns related to the primary functionality of the system
(core concerns) are localized in classes, while other concerns
(cross-cutting concerns) such as logging, caching, security,
thread safety, etc. are scattered across several classes. The
Aspect-Oriented (AO) paradigm takes another step towards
ideal SOC by introducing a new unit of modularity: the
aspect. Aspects localize the data and behaviour of cross-cutting
concerns and specify points in the structure or execution of the
core (join points) where aspect behaviour (advice) applies. A
weaving mechanism interleaves the execution of the core with
that of the aspects.

B. Concern Interactions

By untangling cross-cutting behaviour from core behaviour,
the AO paradigm makes it easier to reason about individual

concern behaviour. Reasoning about overall system behaviour
however, becomes a challenge as it requires examining the
woven behaviour of the core and the aspects, which may
or may not be explicitly available to the developer in a
comprehensible form (this depends on the workings of the
weaving mechanism). This situation can give rise to unan-
ticipated anomalies in the behaviour of the woven system.
The desired properties of the woven behaviour of two con-
cerns (possibly compound, i.e. the result of weaving two or
more primitive concerns) are (1) existing critical correctness
properties of the behaviour of each individual concern and
(2) new correctness properties of the woven system; if this
set of properties is inconsistent, we say that two or more
of the concerns involved undesirably interact. In (1) we say
critical correctness properties, to distinguish between desired
and undesired interactions. The very purpose of weaving an
additional concern may be to violate existing properties of
constituent concerns in favor of achieving new properties
for the woven system. In the remainder of this paper the
term interaction will be used to mean undesired interaction.
A simple example of concern interactions from [2] is the
interaction between logging and encyrption aspects applied to
some core system. The encryption aspect encrypts the content
of messages passed within the core, while the logging aspect
logs the messages for debugging purposes. If logging precedes
encryption, encryption is compromised by a plain log file; and
if encryption precedes logging, logging is compromised by
an encrypted log file that is not very useful for debugging.
More sophisticated instances of concern interactions have
been identified in various domains such as telephony, email,
middleware, multimedia, etc. references to which can be found
in [3].

C. Research Objective and Overview

The sooner an error is found in the software development
process the easier it is to fix. In this paper we present a
process for detecting concern interactions at the design stage
(see Fig. 1). The process assumes AO designs expressed in
the UML and our domain specific weaving rule specification
language (WRL). Here, the data and behaviour of concerns are
modeled separately using UML class and statechart diagrams,
and rules for weaving concern behaviour are specified in WRL.
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Fig. 1. Design-level concern interaction detection process overview

WRL defines a join point model on UML statecharts and
supports the following:
• Before and after advice (before advice can conditionally

consume the advised join point)
• Assignment of aspect instances to core instances
• Aspects of aspects
• Aspect composition by a precedence operator on advice

The process consists of two tasks:
• Task 1: The AO model is syntactically analyzed to reveal

advice overlaps; e.g. instances where multiple advice is
applied to the same join point. Such overlaps can be the
source of interactions and can easily be overlooked by
the developer. Examination of the analysis report by the
developer may lead to revisions of the AO model.

• Task 2: A weaving process is applied to the AO model
the output of which is a woven OO model expressed in
the UML. Existing UML verification techniques (such
as [4], [5], and [6]) are applied before (on the UML
component of the AO model) and after weaving, against
desired properties specified by the developer to detect
interactions as defined in Section I-B. The verification
report may reveal indirect interactions not exposed by
task 1, and may be used to determine whether advice
overlaps revealed by task 1 do indeed correspond to
interactions. It should be noted that formal verification
of UML is still a research topic; however, we view it as
an available technology.

II. CASE STUDY

To illustrate our process we will use a well-known example
from the domain of feature interactions in telephony systems
adopted from [7]. Here, the telephony system is comprised of
a set of users (telephone receivers), a network switch, and a set
of control software modules (one per user). All communication
between users and control software modules goes through the
switch. In its basic form, a control software module manages a
simple connection between its user and another party by com-
municating with its user and the other party’s control software
module. In modern telephony systems, users can enhance their
control software module by subscribing to various features
such as call forwarding (CF), which forwards incoming calls
to a third party, and originating call screening (OCS), which

prevents outgoing calls to users on a screening list. In some
instances, features fail to co-exist: i.e. features intefere with
one another’s operation or in other words, they interact. As an
example, imagine that user 1 has subscribed to OCS, with a
screen on user 3, and that user 2 has subscribed to CF, with all
calls forwarded to 3. If 1 calls 2, and the call is forwarded to 3
due to 2’s CF, then 1’s OCS is compromised, and if the call is
not forwarded due to 1’s OCS, 2’s CF is compromised. Hence
the two features interact. In the remainder of this paper we will
see how our process can be used to detect this interaction. The
case study will be referred to as FITEL for feature interactions
in telephony systems.

III. A RESTRICTED UML

In this section we describe a subset of the UML that is
of interest in our process, largely based on [8]. An OO UML
model is a set of classes and their initial instantiations. A class
has a name, data, and behaviour. Class data is a set of variables
called attributes, and class behaviour is a statechart. The initial
instantiantion of a class is an instance of that class with initial
values for its attributes. A statechart consists of
• A hierarcy of states of types and or or with rules: 1) the

root is an or state 2) along any path from the root to
a leaf, state types alternate between and and or 3) leafs
are necessarily and states. For every or state, one child
is designated as its initial state. When an and state is
entered, the initial state of its children are automatically
entered.

• A set of events that the statechart can receive, of types
signal for asynchronous (non-blocking) communication,
or call for synchronous (blocking - i.e., sender blocks
until event processing completes) communication.

• A set of transitions of form src
e[g]/act−−−−−→ dst,

where src/dst, e, g, and act are the transition’s
source/destination state (necessarily of type and), trigger,
guard, and (optionally labeled) action respectively. A
transition with trigger ∗ is called a null transition.

The active configuration σ of a statechart s is the set of states
in which it resides (i.e. its active states). The following rules
apply: the root is always active; if an and state is active, then
so are all of its children; if an or state is active then so is
exactly one of its children; if a state is active, then so are all
of its ancestors. The execution state of s is a tuple 〈σ, ν, q〉
where σ is the active configuration, ν is a map from variables
in the scope of s to their values, and q is the event queue
of s. The initial execution state is 〈σ0, ν0, q0〉 where σ0 is
given by initial states and the above rules on configurations;
ν0 is given by the model’s initial instantiation; and q0 = ∅. An
execution state is stable if no state in the active configuration
is the source of a null transition and is transient otherwise.
Events in q are processed one-by-one in FIFO order in a run
to completion (RTC) step so long as q is not empty. The RTC
processing of an event e takes s from one stable execution state
to the next, 〈σi, νi, qi〉 e−→ 〈σi+1, νi+1, qi+1〉, by the following
process (adopted from [9]):



1) All enabled transitions are identified: A transition is
enabled if its source state is in σi, it is triggered by
e, and its guard is true with respect to ν.

2) Enabled transitions are fired: Firing a transition
src

e[g]/act−−−−−→ dst causes s to leave src, execute act
updating νi, and enter dst upating σi. Two enabled
transitions are in conflict if their source states have an
ancestory relation (multiple enabled transitions with the
same source state are disallowed). Between conflicting
transitions, only the transition whose source state is
lowest in the state tree fires.

3) Null transitions are handled: If Step 2 lands s in a
transient execution state, ∗ is dispatched causing all
enabled null transitions to fire as per Step 2. This
loop continues until a stable execution state is reached.
Intermediate steps that occur within an RTC step are
called microsteps.

Fig. 2 shows the data and behaviour of FITEL’s OO model.
Event receptions of all classes excluding CF and OCS are signal
events while those of CF and OCS are call events. The initial
instantiation of the model is as follows:

os1 : Switch = { cn := ocn, un := oun }for n = 1, 2, and 3
ocn : Controln = { x := os1, id := n } for n = 1, 2, and 3
ou1 : User Caller = { x := os1, id := 1, call := 2 }
oun : User Callee = { x := os1, id := n } for n = 2 and 3
ocf : CF = { x := os1, fw 7→ 3 }
oocs : OCS = { x := os1, screen 7→ 3 }

IV. THE ASPECT-ORIENTED MODEL

In this section we present a language for expressing AO
models, which is an extension/modification of that of [10].
We express AO models in UML and WRL. The UML part
models data and behaviour for each concern , and the WRL
part specifies how concerns cross-cut one another by mapping
join points in the behaviour of an instance of one class (the
core) to advice of instances of other classes (aspects). The
WRL join point model follows:
• Event join point: Is a tuple (σ, e) and corresponds to the

RTC processing of event e by the core statechart, when
it is initially in a configuration σi, where σ ⊆ σi. For σ
to be valid, it must be the subset of some configuration
of the core.

• Action join point: Is a label l and corresponds to the
execution of the action labeled l in the core statechart.
The WRL join point model can be extended to include
join points for specific actions (e.g. event invocation).

A join point can expose contextual data from the core that
may be used in advice. The context of event join point (σ, e)
is the arguments of e. By default, action join points have no
context; however, context can be defined for extensions (e.g.
an event invocation join point can expose parameters of the
invocation). WRL advice is the aspect statechart’s evolution
in response to a join point. Several possible evolutions are
described as a tree of evolution steps (or advice nodes), with
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each path from the root to a leaf corresponding to one possible
evolution. Advice can be specified to apply before or after the
join point. Advice nodes other than the root can take one of
two forms:
• Action node: Is a tuple (σ, act) where act is either an

event invocation action e(params) or skip. If act =
e(params) the node’s action is a single evolution step
of the aspect statechart by the execution of e(params),
which leads to the RTC processing of event e with
arguments params (expressions over the advised join
point’s context) by the aspect statechart. If act = skip,
the node’s action is to do nothing. The node’s action is
performed only if the node is enabled: i.e., the aspect
statechart is initially in a configuration σi, where σ ⊆
σi. For σ to be valid, it must be the subset of some
configuration of the aspect.

• Consume node: A special node con that does not evolve
the aspect statechart; rather it halts advice execution and
consumes the advised join point.

The following restrictions apply:
1) Consume nodes must be leaves, cannot have siblings,

and can only appear in before advice
2) Sibling action nodes cannot be concurrently enabled for

any configuration
Upon occurence of the advised join point, the aspect statechart
evolves through a sequence of steps described by action nodes
of the advice tree along a path that is traced as follows: starting
from the root and until a leaf is reached or the path is blocked,
the path is extended by the enabled child of its tail and the
action described by the enabled child is performed (note that
consume nodes are always enabled). If the tail has no enabled
children, the path is blocked. We allow a class to be both a core
(to be advised) and an aspect (to advise), hence the possibility
of aspects of aspects, with the following restrictions: 1) aspect
classes cannot receive signal events and 2) two classes may not
mutually (transitively) advise one another. The WRL supports
basic aspect composition by allowing the odering of a set of
advice from one or more aspect(s) on a given join point.

The WRL for FITEL is shown in Fig. 3 in an arbitrary
syntax, and is explained below:
• Weaving rule 1: Before core instance oc1 : Control1

can process event dial(num : int) when it is in state
offhook, aspect instance oocs : OCS processes the event.
If as a result, oocs’s statechart lands in state screen, the
event is consumed (preventing the core from seeing it).
Otherwise, oc1 processes the event as usual.

• Weaving rule 2: Before core instance oc2 : Control2 can
process event iring(oid : int) regardless of its current
state, aspect instance ocf : CF processes the event. Then,
unconditionally, the event is consumed.

V. SYNTACTIC ANALYSIS OF THE AO MODEL

The syntactic analysis of the AO model reveals the follow-
ing to the developer:

1) When multiple advice applies to the same join point.

Aspect OCS
Core Control1

before ({offhook},dial)
({idle},dial(num))
({idle}, skip)
({screen}, skip)

consume
({screen},dial(num))
({idle}, skip)
({screen}, skip)

consume
ObjectMap

oc1 -> oocs

Aspect CF
Core Control2

before ({root},iring)
({idle},iring(oid))

consume
ObjectMap
oc2 -> ocf

Weaving Rule 1 Weaving Rule 2

Fig. 3. FITEL case study: WRL

2) When one advice consumes a join point preventing other
advice from executing. This could happen in two cases:

a) A before advice consumes a join point preventing
all before advice (of lower precedence) and all
after advice that apply to the same join point from
executing.

b) An advice consumes an event join point preventing
all advice on action join points that may occur
within the event join point from executing. We
say that an action join point jpact = l may
occur within an event join point jpev if the set of
transitions T that may be triggered upon occurence
of jpev includes the transition whose action is
labeled with l. The computation of T may require
a complete exploration of the core statechart. To
make the computation feasable, one could specify
a maximum depth on the exploration, as the goal
is to simply alert the user of possible interactions.

As stated in Section I-C, such advice overlaps are poten-
tial sources of aspect interaction. However, not all aspect
interactions are due to advice overlaps and not all advice
overlaps cause aspect interactions. FITEL is an example of
the former: the syntactic analysis of the FITEL AO model
reveals nothing, while as we know, interactions do exist in
this model. Additionally, advice overlaps do not point to
aspect/core interactions.

VI. THE WEAVING PROCESS

In this section we informally describe the transformation
of an AO model to a behaviorally equivalent OO model. We
present two versions of the transformation below:

WP1. This version serves two purposes: 1) it gives an
operational semantics for WRL in UML and 2) it describes an
unoptimized weaving process. The woven OO model produced
by WP1 is a modified version of the UML part of the AO
model as prescribed by its WRL. The modifications are:

1) Adding one proxy class per core class whose event
join points are advised. The purpose of the proxy is to
implement advice on event join points of the core. The
proxy data are associations to the core and all aspects
that advise event join points of the core, and per advised
event join point, a flag for the consumption of the join
point by some before advice. Its statechart has one state



with a set of self transitions, one per core event reception
e. If e does not correspond to an advised event join point,
its self transition action is a simple invocation of e on
the core. Otherwise, if e corresponds to advised event
join point (σ, e), its self transition action is:

consume := false;
if(core.σ ⊆ σ)
/* for each before advice in order of precedence */
if(!consume)

advice action
...
if(!consume)

core.e
/* for each after advice in order of precedence */
advice action
...

The action for advice adv is given by
advAct(adv.root.children) where advAct(nodes) is:

/* if nodes has just one consume node */
consume := true

/* otherwise for each node (σ, act) in nodes*/
if(aspect.σ ⊆ σ)
act; advAct(node.children)

2) In each core whose event join points are advised, chang-
ing signal events corresponding to advised event join
points into call events, to enable synchronous commu-
nication with the core’s proxy.

3) Transferring references to core classes whose event join
points are advised to their proxy.

4) Adding to the model’s initial instantiation, a proxy
instance per instance of core classes whose event join
points are advised, and transferring initial references to
such core instances to their proxy.

5) For each core whose action join points are advised,
adding references to all aspects that advise its action
join points and per advised action join point, wrapping
its action with advice actions and adding a join point
consumption flag.

6) Setting initial aspect references of proxy instances and
instances of core classes whose action join points are
advised, to the appropriate aspect instance as prescribed
by the AO model’s WRL.

Fig. 4 shows the data and part of the behaviour of FITEL’s
woven model using WP1. Here, PControl1 and PControl2
are proxy classes for Control1 and Control2 respectively.
The behaviour of PControl2 has not been shown for brevity
and is derived similar to PControl1. The behaviour of all
other classes are the same as in the AO model, with the excep-
tion that the dial and iring signal receptions of Control1
and Control2 respectively are made into call receptions. The
initial instantiation of the woven model becomes:

os1 : Switch = { cn := opcn, un := oun } for n = 1, 2, and 3
opc1 : PControl1 = { c := oc1, ocs := oocs, jp1 con := false }
opc2 : PControl2 = { c := oc2, cf := ocf, jp2 con := false }
... (other initial instantiations remain the same)
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Fig. 4. FITEL case study: Woven model (WP1)

WP2. This version describes an optimized weaving process
whose outcome is a woven OO model better suited to formal
verification. The key to the optimization is to move class
elements that implement advice on event join points of a core
from the core proxy to the core itself, removing the need
for proxies. In the absence of proxies, such elements have
a lesser impact on the size of a flat finite state automata that
simulates the woven OO model. This implies lower verification
complexity. Unfortunately, the benefits of the optimization
come with a cost: loss of support for after advice on event
join points, since after advice applies after the completion of a
join point, and while it is possible to observe when an advised
event join point of a core completes from its proxy (this is
when the call action that triggers the join point completes), it
is not possible to do so from within the core in the presence of
concurrency. To accomodate UML verification tools such as
[6] that do not support concurrent regions in UML statecharts
(i.e. and states that have more than one child) we require that
statecharts in the UML part of the AO model: 1) do not have
concurrent regions, and 2) do not have conflicting transitions
(see Section III). The FITEL AO model and (we believe)
many other useful AO models statisfy these conditions. The
modifications made by WP2 to the UML part of the AO model
as prescribed by its WRL are:

1) For each core whose event join points are advised,
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adding references to all aspects that advise its event join
points and per advised event join point jpev = (σ, e),
adding a consume flag and place-holders for arguments
of e, and replacing transitions that may be triggered
upon occurence of jpev with a set of transitions that
delay jpev by a microstep. Advice actions are embedded
in the one microstep delay. Restriction 1 (on the UML
part of the AO model) above, ensures that exactly one
member of a possible set of conflicting transitions can
be triggered upon occurence of an advised event join
point, and restriction 2 ensures that this set has only
one member. So it is possible to precisely determine
the transition in the core statechart where advice actions
should be embedded.

2) Modification 5 of WP1.
3) Setting initial aspect references of core classes to the

appropriate aspect instance as prescribed by the AO
model’s WRL.

Fig. 5 shows the data and part of the behaviour of FITEL’s
woven model using WP2. The behaviour of Control2 has not
been shown for brevity and is derived similar to Control1.
The behaviour of all other classes are the same as in the AO
model. The initial instantion of the woven model becomes:

oc1 : Control1 = { x := os1, id := 1, num arg := 0,
ocs := oocs, jp1 con := false }

oc2 : Control2 = { x := os2, id := 2, oid arg := 0,
cf := ocf, jp2 con := false }

... (other initial instantiations remain the same)

VII. EVALUATION

This section evaluates the proposed process by informal
analytical arguments concerning the verification complexity
of the woven model generated by the weaving processes,
the expressiveness of the AO modeling language, and the
traceability of results from the static analysis and verification
tasks to the AO model; and by empirical results obtained from
applying the process to FITEL.

a) Verification complexity.: WP1 and WP2 differ both
in the number of class elements they introduce to implement
advice on event join points, and in where they allocate such
elements in the woven model. The increased verification
complexity of the woven model compared to the UML part
of the unwoven model depends on both the number and
allocation of advice elements (for event join points). The
number of advice elements depends on the AO model, while
for a given number of advice elements, the impact of the
allocation of these elements on the verification complexity of
the woven model decreses from WP1 to WP2. The decrease
in verification complexity comes at the expense of support for
AO model features: From WP1 to WP2 we lose support for
after advice, concurrent regions, and conflicting transitions.

b) Expressiveness of AO model.: We will assess the
expressiveness of the AO modeling language described in
Section IV by comparing it to the (in our opinion, expressive)
aspect definition language of Event-based AOP (EAOP ) [2].
In EAOP, an aspect in its most basic form, is a rule that
maps a join point in the execution trace of the core to advice.
Aspects can be composed by recursion, choice, sequential, and
(adapted) parallel composition operators. Compound aspects
are state machines that evolve from one consituent aspect to
another (based on the composition operators) in response to
join points. Aspects themselves can contribute join points to
the execution trace; that is, they can be advised by other
aspects. In our modeling approach, a basic aspect is a state
machine that reacts to join points by executing one or more
advice trees (before or after the join point), where each advice
tree prescribes one or more evolution steps based on the join
point context (and optionally, the consumption of the join point
in the case of before advice). Aspects can only be composed
sequentially, but at the granularity of advice; that is, order is
imposed on advice (within a before/after category) and not on
aspects. As explained in Section IV aspects of aspects are also
supported in our approach. We believe, there is no fundamental
difficulty is changing the weaving processes to support the rich
composition operators of EAOP; however, the affect of such
support on the verification complexity of the woven model is
an important consideration.
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Fig. 6. FITEL verification results using IFx

On another note, with static weaving processes such as ours,
per instance advice (i.e. advice on a particular instance of a
core class rather than on all instances of the core) cannot
be supported. FITEL is an example of where per instance
advice is needed: ideally, we would model the basic control
software with a single class (say Control) and assign features
to specific instances of this class. Per instance advice can be
(perhaps not attractively) simulated statically by duplicating
the core class for each advised core instance. This method has
been applied to FITEL in Section III by duplicating Control
per user (Control1− 3).

c) Traceability: Static analysis is performed on the un-
woven model, and as such, its results are readily traceable to
elements of the AO model. Formal verification however, is
performed on the woven model. Assuming the UML verifier
tool presents error scenarios in UML (rather than in a language
that the tool translates UML to, e.g. Promela [4] or IF [6] - and
both [4] and [6] do so), traceability of error scenarios to the
unwoven AO model deteriorates from WP1 to WP2, as class
elements that implement advice on event join points become
less localized (advice elements for action join points have the
same allocation for all approaches). Regardless the weaving
process used, the direct mapping from advice elements to
advice trees allows reasonable traceability.

d) Empirical Results: We used IFx [6] to verify the
correctness property:

Propocs = ‘No connection from user 1 to user 3 is possible’

of FITEL’s woven model as required by the OCS subscription
of user 1, once with only Weaving Rule 1 (only weave OCS),
and once with both Weaving Rule 1 & 2 (weave both OCS
and CF) of Fig. 3 on a machine with 2GB of memory. Fig. 6
tabulates the results using weaving processes WP1 and WP2.
The column States is the size of the state space of an IF model
equivalent to FITEL’s woven model and is a measure of the
woven model’s verification complexity. Note that Propocs is
satisfied with only OCS woven, but fails to satisfy with both
OCS and CF woven: this indicates an interaction between these
two features (recall that this was not captured in the syntactic
analysis task).

Note from Fig. 6 that the state-space using WP1 (and with
both OCS and CF woven) is too large to fit even in 2GB
of memory. It appears that with current UML verification
technology, WP1 is not feasible for moderately complex
models, and should be used only if the model requires after
advice and is relatively simple. WP2 on the other hand, does
appear feasible, and we believe a large set of useful AO models
satisfy its restrictions.

VIII. RELATED WORK

Detection and resolution of feature interactions in telephony
systems (e.g. FITEL) has been an active research area for many
years [11]. Using AO technology to detect feature interactions
has also been studied [12], where AspectJ [13] (a popular AO
programming language) is used to encode the control software
as a finite state machine (FSM) and features as aspects that
change the FSM (or core). Program slicing is used to identify
the part (slice) of the core changed by each aspect and overlaps
in aspect slices are reported as interactions between features
encoded by the aspects.

The detection and resolution of concern interactions in
generic AO systems is a relatively newer research area. EAOP
[2] (whose aspect definition language we described briefly
in Section VII) defines aspect interaction as aspects advising
the same join point (the aspect composition operators serve
as linguistic support to resolve interactions). In Section V
we used the term advice overlap for this definition, and
explained how it may fail to capture important interactions
in a system (e.g. FITEL). We illustrated via FITEL how task
2 of our process can detect such interactions. In Section VII
we pointed out that our approach falls short of EAOP in
linguitic support for interaction resolution, due to less aspect
composition operators.

An analysis of AO programs that classifies interactions
between aspect advice and core methods is presented in [14]
(interactions between aspects are not considered). Advice can
interact with a method directly by augmenting, narrowing, or
replacing its execution, or indirectly by using object fields also
used by the method. Direct interactions can be found by task
1 of our process: before advice that does not consume and
after advice are augmenting advice, before advice that may
consume is narrowing advice, and before advice that always
consumes is replacement advice. Indirect interactions can be
found by task 2.

A classification of aspect interactions into conflict, depen-
dency, reinforcement, and mutex interactions and a means
of documenting them is presented in [3]. Our definition of
concern interaction is closest to the conflict category; i.e.,
interactions due to semantic inteference between concerns.

Research on the formal specification and verification of
AO systems includes the following. In [15], program slic-
ing is applied to AspectJ programs and slices are used to
construct models whose formal verification is feasible. In
[16], superimpositions are introduced as collections of generic
parameterized aspects with formal specifications of assumed
properties of core programs to which they can be applied,
and desired properties of the woven program. Superimpo-
sition specifications are used to define proof-obligations of
the correctness of woven programs and the feasibility of
combining superimpositions. In [17], a behavioural interface
specification language (BISL) for AspectJ that supports the
formal verification of AO programs is proposed. While [15],
[16], and [17] apply to AO systems at the source code level, the
following research targets AO designs. In [18], concerns are



modeled as roles and weaving as role-merging. The models are
formally specified and verified with Alloy. In [19], a run-time
manager is proposed for dynamically weaving aspects with a
core modeled as a labeled transition system; interactions are
detected using run-time model-checking and resolved using
adaptive strategies. In [20], techniques for modularly verifying
aspect advice (modeled as a state machine) without access to
the core are introduced. Our work differs from these efforts in
two respects: First, it uses a practitioner-friendly AO modeling
language made up of a main-stream design language (the
UML) and a simple (and intuitive) domain specific language
(WRL). Second, the computationally expensive formal verifi-
cation is preceeded by a light-weight syntactic analysis. Our
work particularly differs from [19] in that it is an offline
process: all tasks (e.g. syntactic analysis, weaving, and formal
verification) are performed at design time. In contrast, [19]
presents an online process, where aspects can be woven and
interactions detected and resolved at run time.

Research on modular reasoning of AO systems [21] [22]
[23] [24] is aimed at eliminating the need for analyzing the
entire system to understand the effect of applying an aspect
to the core. Such an understanding will aid developers in
foreseeing and resolving interactions.

IX. CONCLUSIONS AND FUTURE WORK

We have presented a process for detecting concern interac-
tions in AO designs expressed in UML (for modeling concern
data and behaviour) and WRL (a domain specific language
for specifying how concerns crosscut). The process consists of
two tasks: 1) A syntactic analysis of the unwoven AO model
to alert the developer of potential sources of interaction. 2)
Verifying properties of the model before and after weaving of
concerns to confirm/reject findings of task 1 and/or to reveal
new interactions. At the heart of task 2 is a weaving process
that maps an unwoven AO model to a behaviourally equivalent
woven OO model. We present three weaving processes: WP1
(supports all features of WRL; yeilds a woven model of high
verification complexity), WP2 (does not support after advice;
verification complexity of woven model is generally lower than
WP1), and WP2.1 ( does not support after advice, concurrent
regions, and conflicting transitions; verification complexity of
woven model is generally lower than WP2), the choice of
which is driven by required WRL features and the complexity
of the AO model. For the (moderately complex) FITEL case
study, we observed that using IFx [6] for UML verification,
WP1 and WP2 are not feasible (due to verification complexity
and lack of support for concurrent regions by the verification
tool respectively) while WP2.1 is feasible. We propose the
following directions for future research:
• Further optimizations to the weaving processes
• Improving expressivity of our AO modeling language by

– Implementing EAOP [2] composition operators and
studying their affect on verification complexity

– Adding introductions (ala AspectJ [13]) to WRL
• Expermenting with more case studies to empirically eval-

uate the effect of the weaving processes on verification

complexity, and the expressivity of our AO modeling
language

• Investigating UML verification tools to determine the
feasibility of verifying larger models
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