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1.1
Equation of a Plane 

A non-zero vector 
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 in (3 will fix the orientation of a plane, to be at right angles to 
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Let P be a point that is known to be on the plane.   Let the Cartesian coordinates of P be (xo, yo, zo).   Its position vector, 
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, allows us to pick out exactly one plane from the infinite set of parallel planes that share the same orientation defined by the plane normal vector 
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The two vectors, together, allow us to define a single plane completely.

Let 
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 be the position vector of a general point R, with Cartesian coordinates (x, y, z), in (3.
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Let 
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, (so that A, B, C are the Cartesian components of the normal vector), then 
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The vector equation of the plane, 
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, then leads to the 

Cartesian equation of the plane:
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Example 1.1.1

Find an equation for the plane through the point (3, (2, 4), which is normal to the vector 
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Example 1.1.2 

Find a unit vector orthogonal to the plane

x  (  2y  +  2z  =  7

Equations of a Line 

A line  L  is determined uniquely by two vectors, a line direction vector, v, which orients the line in (3, and the position vector, a, of a point  P  known to be on that line.

Let  R  be a general point, with Cartesian coordinates (x, y, z), that is constrained to lie on the line L.
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Example 1.1.3 

Find the Cartesian equations of the line that passes through the point (3, 1, 2) and that is parallel to the vector 
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General case: 

A line  
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  which passes through the point (xo, yo, zo) and is parallel to the vector 
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, (where  v1, v2, v3  are all non-zero) has a Cartesian symmetric form 
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If  v1 = 0, then separate out the equation  x = xo.

If  v2 = 0, then separate out the equation  y = yo.

If  v3 = 0, then separate out the equation  z = zo.

Example 1.1.4 

Find the Cartesian equations of the line through (1, 1, (1) that is perpendicular to the plane  2x + 3z  =  1.
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More Equations of Lines and Planes 

Three non-collinear points, A, B, C, define a plane.
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The three vectors joining the three points to each other lie in that plane.   Any two of them may be used as the basis for a coordinate grid that can be laid out on the entire plane.   
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The vector parametric equation of the plane then follows:
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where


[image: image23.wmf]any one of,,;

,any two of,,;

and.

OAOBOC

ABBCCA

=

=

´=

a

uv

uvn

uuuruuuruuur

v

uuuruuuruur

vv

v

vv


The other vector equation for the plane can be recovered from this form:

Vectors 
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 are both in the plane
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 is normal to the plane.

Let R be a general point in space, with Cartesian coordinates (x, y, z).

If and only if point R lies in the plane, then 

Example 1.1.5 

Find the Cartesian equation of the plane that passes through the points  A(1, 0, 0), 

B(2, 3, 4) and C((1, 2, 1).
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Let R be a general point in (3, with Cartesian coordinates (x, y, z).   Then 
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For R to be on the plane, 

Alternative Solution to Example 1.1.5:

Example 1.1.6 

Find the angle between the line 
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and the plane 
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Example 1.1.7 

Find the intersection of the planes 

( 1 :
  x  (  2y  +    z  =  1    and 

( 2 :
3x  (  5y  +  2z  =  4. 

Example 1.1.7 (continued) 

Summary for Lines and Planes: 

	
	Vector forms
	Cartesian form

	Line
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a = point on line,

v = direction vector
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	Plane
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a = point on plane,

u, v = vectors in plane

OR
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	Ax + By + Cz + D  =  0 ,
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1.3
Area, Arc Length, Tangents and Normals, Curvature 
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With parameterization:
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where   x(ta)  =  a ,   x(tb)  =  b ,  a < b  and   f (x) > 0  on  [a, b]. 

Example 1.3.1 

Find the area enclosed in the first quadrant by the circle  x2 + y2  =  4.
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Example 1.3.1 (continued) 

Review of the Tangent: 
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The unit tangent is
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Arc Length 
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In (2: 

In (3: 

The vector
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 points in the direction of the tangent
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to the curve defined parametrically by r = r(t).

Example 1.3.2 

(a)
Find the arc length along the curve defined by
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, from the point where t = 0 to the point where t = 4π.

(b)
Find the unit tangent 
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Review of Normal and Binormal: 

Unit principal normal: 
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Binormal:
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Curvature: 

The derivative of the unit tangent with respect to distance travelled along a curve is the principal normal vector, 
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.   Its direction is the unit principal normal 
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.   Its magnitude is a measure of how rapidly the curve is turning and is defined to be the curvature: 
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The radius of curvature is 
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The radius of curvature at a point on the curve is the radius of the circle which best fits the curve at that point.

Example 1.3.2 (continued) 

(c)
Find the curvature  κ(s)  at any point for which s > 0, for the curve 
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where  s  is the arc length from the point (0, 1/4, 0).

Another formula for curvature: 
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Example 1.3.3 

Find the curvature and the radius of curvature for the curve, given in parametric form by

x  =  cos t ,    y  =  sin t ,   z  =  t .    Assume SI units.

Let   c = cos t ,    s = sin t .

1.4
Conic Sections 

All members of the family of curves known as conic sections can be generated, (as the name implies), from the intersections of a plane and a double cone.   The Cartesian equation of any conic section is a second order polynomial in x and y.   The only cases that we shall consider in this course are such that any axis of symmetry is lined up along a coordinate axis.   For all such cases, the Cartesian equation is of the form 

A x2  +  C y2  + D x + E y + F  =  0

where A, C, D, E and F  are constants.   There is no “xy” term, so B = 0.

The slope of the intersecting plane is related to the eccentricity, e of the conic section.
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 x2 + y2  =  r2 

A parametric form is 

(x, y) = (r cos (, r sin ( ),   (0 < (  < 2().
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The circle is clearly a special case of the ellipse, with  e = 0  and  b = a = r.

The longest diameter is the major axis (2a).   The shortest diameter is the minor axis (2b).

If a mirror is made in the shape of an ellipse, then all rays emerging from one focus will, after reflection, converge on the other focus.

A parameterization for the ellipse is   
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y2  =  4ax 

One vertex is at the origin.

The centre and the other vertex and focus are at infinity.

If a mirror is made in the shape of a parabola, then all rays emerging from the focus will, after reflection, travel in parallel straight lines to infinity (where the other focus is).   The primary mirrors of most telescopes follow a paraboloid shape.
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The hyperbola has two separate branches.

As the curve retreats towards infinity, the curve approaches the asymptotes 
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The distance between the two vertices is the major axis (2a).

If a mirror is made in the shape of an hyperbola, then all rays emerging from one focus will, after reflection, appear to be diverging from the other focus.

Circles and ellipses are closed curves.   Parabolas and hyperbolas are open curves.
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A special case of the hyperbola occurs when the eccentricity is 
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 and it is rotated 45( from the standard orientation.   The asymptotes line up with the coordinate axes, the graph lies entirely in the first and third quadrants and the Cartesian equation is   xy = k.

This is the rectangular hyperbola.

Degenerate conic sections arise when the intersecting plane passes through the apex of the cone.   Two cases are:
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Another degenerate case is
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Example 1.4.1 

Classify the conic section whose Cartesian equation is   3y2  =  x2  +  3 .

Example 1.4.2 

Classify the conic section whose Cartesian equation is   21x2  +  28y2  =  168x  +  168y .
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Moving up to three dimensions, we have the family of quadric surfaces.

1.5
Classification of Quadric Surfaces  

Again, we shall consider only the simplest cases, where any planes of symmetry are located on the Cartesian coordinate planes.   In nearly all cases, this eliminates “cross-product terms”, such as xy, from the Cartesian equation of a surface.   Except for the paraboloids, the Cartesian equations involve only  x2, y2, z2  and constants.

The five main types of quadric surface are: 
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The ellipsoid (axis lengths  a, b, c) 
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The axis intercepts are at

(±a, 0, 0), (0, ±b, 0) and (0, 0, ±c).

All three coordinate planes are

planes of symmetry.

The cross-sections in the three

coordinate planes are all ellipses.

Special cases: 

a = b > c :   oblate spheroid (a “squashed sphere”)

a = b < c :   prolate spheroid (a “stretched sphere” or cigar shape)

a = b = c :   sphere

Hyperboloid of One Sheet  
(Ellipse axis lengths   a ,  b ; aligned along the  z axis)
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For hyperboloids, the central axis is

associated with the “odd sign out”.

In the case illustrated, the hyperboloid is aligned along the z axis.

The axis intercepts are at

(±a, 0, 0) and (0, ±b, 0).

The vertical cross sections in the x-z and y‑z planes are hyperbolae.

All horizontal cross sections are ellipses.

Hyperboloid of Two Sheets 
(Ellipse axis lengths   b ,  c ; aligned along the  x axis)
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For hyperboloids, the central axis is associated with the “odd sign out”.

In the case illustrated, the hyperboloid is aligned along the x axis.

The axis intercepts are at

(±a, 0, 0) only.

Vertical cross sections parallel to the y-z plane are either ellipses or null.

All cross sections containing the x axis are hyperbolae.
Elliptic Paraboloid   

[image: image122.png]



(Ellipse axis lengths   a ,  b ; 

aligned along the  z axis)
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For paraboloids, the central axis is

associated with the “odd exponent out”.

In the case illustrated, the paraboloid is aligned along the z axis.

The only axis intercept is at the origin.

The vertical cross sections in the x-z and y‑z planes are parabolae.

All horizontal cross sections are ellipses (for z > 0).

Hyperbolic Paraboloid   
(Hyperbola axis length   a ;  aligned along the  z axis)
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For paraboloids, the central axis is associated with the “odd exponent out”.

In the case illustrated, the paraboloid is aligned along the z axis.

The only axis intercept is at the origin.

The vertical cross section in the x-z plane is an upward-opening parabola.

The vertical cross section in the y-z plane is a downward-opening parabola.

All horizontal cross sections are hyperbolae, (except for a point at z = 0).

The plots of the five standard quadric surfaces shown here were generated in the software package Maple.   The Maple worksheet is available from a link at 

"http://www.engr.mun.ca/~ggeorge/2422/programs/index.html".

Degenerate Cases:  
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Example 1.5.1 

Classify the quadric surface, whose Cartesian equation is   2x  =  3y2  +  4z2 .

Example 1.5.2 

Classify the quadric surface, whose Cartesian equation is   z2  =  1 + x2 .

Example 1.5.3 

Classify the quadric surface, whose Cartesian equation is   x2   (  y2  +  z2  +  1  =  0 .

1.6
Surfaces of Revolution  

Consider a curve in the x-y plane, defined by the equation  y = f (x).

If it is swept once around the line  y = c , then it will generate a surface of revolution.
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At any particular value of x, a thin cross-section through that surface, parallel to the y‑z plane, will be a circular disc of radius r, where 

Let us now view the circular disc face-on, (so that the x axis and the axis of rotation are both pointing directly out of the page and the page is parallel to the y‑z plane).
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Let  (x, y, z)  be a general point on the surface of revolution.

From this diagram, one can see that


r2  =    

Therefore, the equation of the surface generated, when the curve  y = f (x)  is rotated once around the axis  y = c , is

Special case: 
When the curve  y = f (x)  is rotated once around the x axis, the equation of the surface of revolution is 

Example 1.6.1 

Find the equation of the surface generated, when the parabola  y 2  =  4ax  is rotated once around the x axis.

The Curved Surface Area of a Surface of Revolution 

For a rotation around the x axis, 
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the curved surface area swept out by the element of arc length  (s  is approximately the product of the circumference of a circle of radius y with the length  (s.

Integrating along a section of the curve  y = f (x)  from x = a  to  x = b, the total curved surface area is

For a rotation of  y = f (x)  about the axis  y = c, the curved surface area is 

Example 1.6.2 

Find the curved surface area of the circular paraboloid generated by rotating the portion of the parabola y 2 = 4cx  (c > 0) from x = a ( > 0)  to  x = b about the x axis.
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1.7
Hyperbolic Functions 

When a uniform inelastic (unstretchable) perfectly flexible cable is suspended between two fixed points, it will hang, under its own weight, in the shape of a catenary curve.   The equation of the standard catenary curve is most concisely expressed as the hyperbolic cosine function,  y = cosh x, where 
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The solutions to some differential equations can be expressed conveniently in terms of hyperbolic functions.

The other five hyperbolic functions are 
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Unlike the trigonometric functions, the hyperbolic functions are not periodic.

However, parity is preserved:   

Of the six trigonometric function, only  cos (  and  sec (  are even functions.

Of the six hyperbolic functions, only  cosh (  and  sech (  are even functions.

The other functions are odd.
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There is a close relationship between the hyperbolic and trigonometric functions.

From the Euler form for e j( ,   e j(  =  cos (  +  j sin ( , 

Identities: 

Let   x = j( :


sin2(  +  cos2(    ≡   1    (




1 +  tan2(    ≡   sec2(     (



Derivatives 
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A list of identities and derivatives for hyperbolic functions is presented in the suggestions for a formula sheet, in Appendix A to these lecture notes.

1.8
Integration by Parts 

Review:

Let  u(x)  and  v(x)  be functions of  x.   Then, by the product rule of differentiation,
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Integrating with respect to  x :
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This leads to the formula for integration by parts:
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Example 1.8.1 

Find
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Example 1.8.2 
[Repeated use of integration by parts]

Find
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Shortcut (a tabular form for repeated integrations by parts): 
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Example 1.8.3 

Find 
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Example 1.8.4 
(recursive use of integration by parts)

Find 
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1.9
Leibnitz Differentiation of a Definite Integral 
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If the limits of integration are both constant, then just differentiate the integrand with respect to x, treating all other terms as constants.
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Example 1.9.1  

Evaluate  
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Using Leibnitz differentiation:

Directly:

See Problem Set 3 and Section 5.10 for more practical examples of Leibnitz differentiation.

End of Chapter 1
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