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1.A Examples for the Sketching of Parametric Curves 
 
A curve in  is a one-dimensional object.   To locate any point on that curve requires 
the value of just one parameter (a real number).   The Cartesian parametric equations of 
any curve are therefore  

3\

 ( ) ( ) ( ), ,x x t y y t z z t= = = ,  where  t  is any real number. 
The Cartesian vector parametric equation is  
 ( ) ( ) ( ) ( )ˆ ˆ ˆt x t y t z t= + +r i j kK ,  where  t  is any real number. 
 
If the parameter t is the time, then r(t) describes the location of a particle at any time t.    

The velocity of the particle is just ( ) ˆ ˆ ˆd dx dy dzt
dt dt dt dt

= = + +
rv i j k
KK . 

The acceleration is  ( )
2 2 2 2

2 2 2 2
ˆ ˆ ˆd d d x d y d zt

dt dt dt dt dt
= = = + +

v ra i j k
KKK . 

 
 
 
 
 
 
Example 1.A.1 
 
Sketch the curve in whose Cartesian equation in parametric form is  2\

x = t cos t ,   y = t sin t 
 

( )2 2 2 cos sin 2x y t t t+ = + = t  
 
(distance from O)  =  | t |  
 

tany t
x
=  

 
 

angle tθ =   (for t > 0) 
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Example 1.A.1   (continued) 
 
Therefore the curve is a spiral outwards from O, with period 2π. 
 

 
 
Incorporating negative values of the parameter t yields a mirror image of this curve: 
 

( ) ( )cos , sint t x t t x y t t→ − ⇒ → − − = − → − − = + y  
 
⇒ reflection in y axis of  t > 0  is  t < 0. 
 

 
 
 
In polar coordinates (section 1.2), the equation of this spiral is just  r θ= . 
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Example 1.A.2 
 
The parametric form of the Cartesian equation of a curve in  is  2\
 

2 3,x t y t= =  
(a) Sketch the curve. 

(b) What happens to the principal unit tangent ˆ d d
dt dt

= ÷
r rT
K K

 at the origin?  

 
 
 

(a) 22 , 3dx dyt t
dt dt

= =  

The only value of t at which any of , , ,dx dyx y
dt dt

 is zero is t = 0. 

0 0 , 0 , 0 anddx dyt x y
dt dt

> ⇒ > > > > 0  

0 0 , 0 , 0 anddx dyt x y
dt dt

= ⇒ = = = = 0  

0 0 , 0 , 0 anddx dyt x y
dt dt

< ⇒ > < < > 0  

Therefore, for t < 0, the curve is moving up and left through the fourth quadrant, arriving 
at the origin at t = 0.   Thereafter, the curve is moving up and right through the first 
quadrant.   No part of the curve is to the left of the y-axis. 
 

( )
2

0
3 3 , 0 lim
2 2 t

dy dy dx t dyt t
dx dt dt t dx→

= ÷ = = ≠ ⇒ = 0  

There must therefore be a horizontal tangent (and a cusp) at the origin. 
 
Sketch of 2 3,x t y t= = : 
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Example 1.A.2   (continued) 
 
Examination of concavity will help to confirm the behaviour near the origin. 
 

2

2

d y d dy d dy dt dt d dy dx dx
dx dx dx dt dt dx dx dt dt dt dt

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = ⋅ = ÷⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

÷  

 

( ) ( ) ( )
2 2

2

3 32 2
2 2

d y d t dt t t
dx dt t dt t

⎛ ⎞ ⎛ ⎞⇒ = ÷ = ÷ =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

3
4

 

 
The curve is therefore concave down everywhere in the fourth quadrant (t < 0) 
and concave up everywhere in the first quadrant (t > 0). 
 
 
 
 
(b) The tangent vector is  

2 2, 2 , 3 2, 3 4d dx dy dt t t t t t
dt dt dt dt

= = = ⇒ =
r rK K

9+  

The unit tangent vector, everywhere on the curve except at the origin, is  

2

1ˆ 2, 3
4 9

d d t t
dt dt t t

= ÷ = ⋅
+

r rT
K K

 

t > 0    ⇒    | t | = t    ⇒    t / | t | =  +1 

0

1 ˆˆlim 2, 0 1, 0
4 0t +→

= + = + = +
+

T i  

t < 0    ⇒    | t | = –t    ⇒    t / | t | =  –1 

( )
0 0

1 ˆˆ ˆlim 1 2, 0 1, 0 lim
4 0t t− +→ →

= − = − = − ≠
+

T i T  

The unit tangent therefore is undefined at the origin.   
It flips direction abruptly, from –i  to  +i, as the curve passes through the cusp at the 
origin;  

the curve reverses direction suddenly at the cusp. 
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Example 1.A.3 
 
For the curve whose Cartesian equation in parametric form is  
 

2 3, 3x t y t t= = −  
(a) Find the tangents at the point  (x, y) = (3, 0). 
(b) Sketch the curve.  
 
 
 
(a) 

2 2dxx t t
dt

= ⇒ =  

3 23 3dyy t t t
dt

= − ⇒ = −3 

3 3x t= ⇒ = ±  
and 

( )20 3 0 0y t t t= ⇒ − = ⇒ = ±, 3  

( ) ( )at , 3,0 , 3x y t∴ = = ±  
The curve therefore passes through the point (3, 0) twice. 
 

( )

( )
( )

2

3,0

3 3 1
3 2 3
2 32 3

dy dy dx dy
dx dt dt dx

⎛ ⎞± −⎜ ⎟ ×⎝ ⎠= ÷ ⇒ = = = ±
±±

 

 
The two slopes are distinct. 
The curve therefore crosses itself at (3, 0). 
In Cartesian coordinates, the equations of the two tangents to the curve at the point (3, 0) 
are  

( )3 3y x= ± −  
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Example 1.A.3   (continued) 
 
(b) 
 
x = 0  at  t = 0 
 
x > 0  elsewhere. 
 

( )3 23 3 0 at 0,y t t t t t= − = − = = ± 3  

 
( )22 3 13 3 0 at 1

2 2

tdy t t
dx t t

−−
= = = = ±  

 
dy
dx

 is undefined at  t = 0. 

 

The values of  t , at which at least one of , , ,dx dyx y
dt dt

 are zero, are  

3, 1, 0, 1, 3t = − − + + : 
 
Construct a table to aid in sketching the curve:  
 

 
 

( ) (1 , 1,t x y= ± ⇒ = ∓ )2  

( ) ( )3 ,t x y= ± ⇒ = 3, 0  
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Example 1.A.3   (continued) 
 
Sketch of 2 3, 3x t y t= = − t : 

 
 
 
 
Concavity:  
 

2

2

d y d dy d dy dt dt d dy dx dx
dx dx dx dt dt dx dx dt dt dt dt

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = ⋅ = ÷⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

÷  

 

( ) ( )
2

2
1 23 3 3 32 2

2 2 2 2
d y d t t t t t
dx dt

− −⎛ ⎞ ⎛ ⎞⇒ = − ÷ = + ÷⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
( )2

2

2

3

3 1

4

td y
dx t

+
⇒ =  

 
The curve is therefore concave up for  t > 0 
and concave down for  t < 0. 
This confirms the sketch. 
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Example 1.A.4 
 
Determine the shape of the curve whose Cartesian equation in parametric form is  
 

cos , sin ,x t y t z t= = =  
 
 
Examine the projections of the curve onto the three coordinate planes: 
 
In the x-y plane  z = 0  and   2 2 2 2cos sin 1x y t t+ = + =
 
which is a circle, centre O, radius 1.   Top view:  
 
In the y-z plane  x = 0  and  y = sin t  =  sin z  
 
In the x-z plane  y = 0  and  x = cos t  =  cos z  
 
 
 
 
Side views: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The curve is therefore a helix, centred on the z axis, radius 1, rotating once around the 
z axis for every change of 2π in z. 
 



ENGI 2422 Fundamentals – Parametric Curves Page 1.A.9  

Example 1.A.4   (continued) 
 
Modified Maple plot:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Maple file that generates a plot of this helix is available from the course web site, in 
the programs directory:  
"http://www.engr.mun.ca/~ggeorge/2422/programs/". 
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1.B Tangential and Normal Components of Velocity and Acceleration 
 

The tangent vector to a curve r(t)  is  ( ) ˆ ˆ ˆd dx dy dzt
dt dt dt dt

= = + +
rT i j k
KK

 

If the parameter t is the time, then the tangent vector is also the velocity vector v(t). 
The tangential component vT of velocity v(t) is just the speed v(t).    
There is no component of velocity in the normal plane. 
 

The speed v(t) is a scalar quantity:  ( ) ( )
2 2d dx dy dv t t

dt dt dt dt
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

rT
2zKK

 

But the arc length (distance measured along the curve)  s  is defined by  

 
2 2ds dx dy dz

dt dt dt dt
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

 

Therefore the speed ( )
2 2d ds dx dy dz 2

dt dt dt dt dt
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

rKv t  

and the unit tangent vector is 

ˆ d ds d
v dt dt d

= = = ÷ =
T v rT
T s

r
K K KK
K . 

As seen in Example 1.A.2 above,  is ill-defined where T̂ d
dt

=
r 0
K K

. 

 
As a curve travels through , its tangent vector points straight ahead, defining a normal 
plane at right angles to that tangent vector. 

3\

 

 
 
Imagine that a roller coaster car is travelling along the curve, with 
the front in the direction of travel and oriented so that the side 
doors are in the direction in which the car is instantaneously 
turning.   Then the direction in which T  is changing defines the 
principal unit normal , (except where the curve is straight or has 
a point of inflexion). 

ˆ

N̂
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By definition, the magnitude of any unit vector is 1 and therefore is absolutely constant.   
Only the direction of a unit vector can change.   The natural parameter to use for any 
curve (though usually not the most convenient in practice) is the distance travelled along 
the curve: the arc length s.   Therefore define the principal normal vector to be the 
derivative of the unit tangent vector with respect to arc length: 
 

ˆ ˆd d
ds dt dt

= = ÷
T TN dsK

 

 
from which it follows that the unit principal normal vector is  
 

ˆ ˆ ˆ ˆˆ d d d d
ds ds dt dt

= ÷ = ÷
T T T TN  

 
The magnitude of the principal normal vector is a measure of how sharply the curve is 
turning.   It is therefore the curvature,  
 

ˆ ˆd d
ds dt dt

κ = = = ÷
T TN dsK

 

 
and . ˆκ=N N

K

The tangent and principal normal vectors are orthogonal to each other everywhere on the 
curve.   A third unit vector, orthogonal everywhere to both  and , is the unit 
binormal vector, defined simply as 

T̂ N̂

 
ˆ ˆ ˆ= ×B T N  

 
These three unit vectors form an orthonormal set of vectors at every point on the curve 
where they are defined. 
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Example 1.B.1 
 
Find the unit tangent, normal and binormal vectors everywhere on the helix  
 

( ) , , cos , sin ,t x y z t t= =rK t  
 
 
 

cos , sin , sin , cos ,1d d t t t t t
dt dt

= = = −
rT
KK

 

 
2 2sin cos 1 2ds d t t

dt dt
= = + + =

rK  

 
sin , cos ,1ˆ

2
t td ds

dt dt
−

⇒ = ÷ =
rT
K

 

 
 

ˆ ˆ sin , cos ,1 1 1 cos , sin , 0
22 2

t td d ds d t t
ds dt dt dt

⎛ − ⎞
= = ÷ = × = − −⎜ ⎟

⎝ ⎠

T TN
K

 

 
1 ˆ cos , sin , 0
2

t t= ⇒ = = − −
NN N
N

KK
K  

[The unit principal normal therefore points directly towards the z axis at all times.] 
 

1 1ˆ ˆ ˆ sin cos 1 sin , cos ,1
2 2cos sin 0

t t t t
t t

= × = − = −
− −

i j k
B T N  

 
One can easily show that  
ˆ ˆ ˆ ˆ ˆ ˆ 0= = =T N N B B Ti i i  [all three vectors are orthogonal] 

and that 
ˆ ˆ ˆ ˆ ˆ ˆ 1= = =T T N N B Bi i i  [all three vectors are unit vectors] 
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We know that the velocity vector is purely tangential:  ˆv=v TK . 
 
The acceleration vector is therefore 
 

 
ˆˆd dv dv

dt dt dt
= = +

v Ta T
KK  

 

But  
ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆd d d d

dt dt dt dt
d ds v
ds dt

κ= ÷ ⇒ = ⋅= =
T T T T T NN N N  

 
 

2ˆ ˆdv v
dt

κ⇒ = +a TK N  

 
 
The tangential and normal components of acceleration are therefore 
 

T
dva
dt

=     and    2
Na vκ=  

 
An alternative form for the normal component of acceleration is 
 

ˆ
N

d d d d da v
dt dt dt dt dt

⎛ ⎞
= = ⋅ ÷⎜ ⎟

⎝ ⎠

T r r rK K K
 

 
There is no binormal component of acceleration. 
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Example 1.B.2   
 
Find the tangential and normal components of velocity and acceleration everywhere on 
the helix  
 

( ) , , cos , sin ,t x y z t t= =rK t  
 
 
 

2 2sin cos 1 2T
dv v t t
dt

= = = = + + =
rv
KK  

 

0T
dva
dt

= =  

 
sin , cos ,1ˆ

2
t t

v
−

= =
vT
K

 

 
ˆ cos , sin , 0

2
t td

dt
− −

⇒ =
T  

 
2 2ˆ cos sin 0

2 1
2N

t tda v
dt

+ +
⇒ = = =

T  

 
OR 

2 2ˆ cos sin 0 1
22 2

t td v
dt

κ
+ +

⇒ = ÷ = =
×

T  

 

( )22 1 2 1
2Na vκ⇒ = = =  

OR 

cos , sin , 0 1d t t a
dt

= = − − ⇒ = =
va a
KK K  

2 2 2 and 0 1T N T Na a a a a a+ = = ⇒ = =  
 
Therefore  
 

 

ˆ2=vK T     and    ˆ ˆ0 1= +a T NK
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1.1 Equation of a Plane  
 
A non-zero vector n  in úK 3 will fix the orientation of a plane, to be at right angles to nK . 
Let P be a point that is known to be on the plane.   Let the Cartesian coordinates of P be 
(xo, yo, zo).   Its position vector, o o o, ,OP x y z= =a

JJJGK , allows us to pick out exactly 
one plane from the infinite set of parallel planes that share the same orientation defined 
by the plane normal v cto Ke r .   n
The two vectors, together, allow us to define a single plane completely. 
 
Let , ,OR x y z= =r

JJJGK  be the position vector of a general point R, with Cartesian 
coordinates (x, y, z), in ú3. 

 
But OR OP PR PR OR OP= + ⇒ = − = −r a

JJJG JJJG JJJG JJJG JJJG JJJG K K  
 
Note that the norma ector n is at right angles to any vector lying in the plane Π. l v

PRonR Π ⇒ ⊥ n
JJJG K       ("perpendicular to") 

 
0PR⇒ =n

JJJG Ki
K K K

 
( ) 0⇒ − =r a ni  

OR 
=r n a nK K Ki iK  

 
which is the vector equation of a plane. 



ENGI 2422 Fundamentals – Lines and Planes Page 1-02 

 

Let , ,A B C=nK , (so that A, B, C are the Cartesian components of the normal vector), 
then  
 

( )o o o a constantAx B y C z D= + + = −a nK Ki  
 

Ax B y C= + +r nK Ki z  
 
The vector equation of the plane, =r n a nK K K Ki i , then leads to the  
Cartesian equation of the plane: 
 

0Ax B y C z D+ + + =  
 
Example 1.1.1 
 
Find an equation for the plane through the point (3, −2, 4), which is normal to the vector 

ˆ ˆ ˆ2 3+ +i .j k  
 

, , 2, 3, 1A B C= =nK  
 

o o o, , 3, 2, 4x y z= = −aK  
 

( )2 3 1 2 3 3 2 1x y z= ⇒ + + = × + × − +r n a nK K K Ki i 4×

4

 
 
Therefore the Cartesian equation of the required plane is 
 

2 3x y z+ + =  
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Example 1.1.2  
 
Find a unit vector orthogonal to the plane 

x  −  2y  +  2z  =  7 
 
From the Cartesian equation of a plane, one may read off the Cartesian coordinates of a 
vector that is at right angles to that plane. 
 

1, 2, 2= −nK  
 

( )22 21 2 2 9n⇒ = = + − + = =nK 3 
 
Therefore a unit normal is  

1
3ˆ 1, 2, 2= −n  

 
[Note that there is one other acceptable final answer, namely the unit vector that points in 
the opposite direction, 1

3ˆ 1, 2, 2= − −n .] 
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Equations of a Line  
 
A line  L  is determined uniquely by two vectors, a line direction vector, v, which orients 
the line in ú3, and the position vector, a, of a point  P  known to be on that line. 
 
Let  R  be a general point, with Cartesian coordinates (x, y, z), that is constrained to lie on 
the line L. 

 
 
 
OR OP PR PR= + ⇒ = +r a
JJJG JJJG JJJG J GK K JJ

 
 
But the line L is parallel to the direction vector v. 
 

PR t⇒ = v
JJJG K for some value of  t. 

 
Therefore the parametric vector equation of the line is  
 

t= +r a vK K K
( )t∈\  

 
[Note that there is one free parameter,  t, which can be any real number.   The number of 
free parameters (one) matches the dimension of the geometric object (the line is a one-
dimensional object).] 
 
The Cartesian equations of the line can be found from the vector parametric form.  
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Example 1.1.3  
 
Find the Cartesian equations of the line that passes through the point (3, 1, 2) and that is 
parallel to the vector ˆ ˆ ˆ2 3− +i .j k  
 

3, 1, 2 , 1, 2, 3= =a vK K −  
 
The vector parametric form is  

( ) ( ) ( )
or

, , 3 , 1 2 , 2 3

t

x y z t t t

= +

= + − +

r a vK K K

 

 
Making  t  the subject of all three simultaneous equations  
 x  =  3 + t ,  
 y  =  1 − 2t   
and z  =  2 + 3t ,  
 
we obtain the Cartesian symmetric form for the equations of the line: 
 

3 1
1 2

x y zt 2
3

− − −
= =

−
=  

 
 
 
 
 
 
 
 
 
 
General case:  
 
A line    which passes through the point (xt= +r aK K Kv o, yo, zo) and is parallel to the 
vector 1 2 3, ,v v v=vK , (where  v1, v2, v3  are all non-zero) has a Cartesian symmetric 
form  

o o

1 2

o

3

x x y y z z
v v v
− − −

= =  

 
If  v1 = 0, then separate out the equation  x = xo. 
If  v2 = 0, then separate out the equation  y = yo. 
If  v3 = 0, then separate out the equation  z = zo. 
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Example 1.1.4  
 
Find the Cartesian equations of the line through (1, 1, −1) that is perpendicular to the 
plane  2x + 3z  =  1. 
 

 
 
 
The normal vector  n  to the plane is at right angles to the plane Π . 
The line L  is also at right angles to the plane Π .  
Therefore the line’s direction vector v must be parallel to n. 
 

2, 0, 3= =v nKK  
 

1, 1, 1= −aK  
 
The vector parametric form is  

( ) ( )
or

, , 1 2 , 1 , 1 3

t

x y z t t

= +

= + − +

r a vK K K

 

 
Making  t  the subject of the equations where possible (for x and z ), the Cartesian 
symmetric form then follows: 

1 11 ,
2 3

x zy − +
= =  
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More Equations of Lines and Planes  
 
Three non-collinear points, A, B, C, define a plane. 

 
 
The three vectors joining the three points to each other lie in that plane.   Any two of 
them may be used as the basis for a coordinate grid that can be laid out on the entire 
plane.    

 
 
 
The vector parametric equation of the plane then follows: 
 

s t= + +r a uK K vK K
,s t∈ ∈\ \  

where 
any one of , , ;

, any two of , ,
and .

OA OB OC

AB BC CA

=

=
× =

a

u v
u v n

JJJG JJJG JJJGK
JJJG JJJG JJGK K

KK K
;

nly  po  R l

 

 
The other vector equation for the plane can be recovered from this form: 
Vectors  and  are both in the plane JJJAB

JJJG
JJJG AC

JJJG
G

AB AC⇒ = ×nK  is normal to the plane. 
Let R be a general point in space, with Cartesian coordinates (x, y, z). 
If and o  if int ies in the plane, then  
 ( ) ( )0 0AR AB AC× = ⇒ − =r a n

JJJG JJJG JJJG K K Ki i  
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Example 1.1.5  
 
Find the Cartesian equation of the plane that passes through the points  A(1, 0, 0),  
B(2, 3, 4) and C(−1, 2, 1). 
 

( ) ( ) ( )2 1 , 3 0 , 4 0 1, 3, 4AB = − − − =
JJJG

 
 

2, 2, 1AC = −
JJJG

 
 

ˆ ˆ ˆ

1 3 4
2 2 1

5, 9, 8

AB AC× =
−

=

×

⇒ − −

=

+

i j
u v

n

kJJJG JJJGK K

K

 

 
Let R be l point in úa genera 3, with Cartesian coordinates (x, y, z).   Then  

( ) ( ) ( )1 , 0 , 0 1, ,AR x y z x y= − − − = −− =r a
JK J GK J

z
,  

5

 
For R to be on the plane
( ) ( )0 0AR AB AC− = ⇒ × =r a n

JJJG JJJG JJJGK K Ki i  

⇒ (x − 1)(−5)  +  y(−9)  +  z(8)  =  0 
⇒ −5x  −  9y  +  8z  =  5 
or 

5 9 8x y z+ − =  
 
Alternative solution (next page): 
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Alternative Solution to Example 1.1.5: 
 
The plane Π  is   Ax + By + Cz + D  =  0 
This equation must be true at all three points on the plane. 
An under-determined linear system of three equations for the four unknown coefficients 
then follows:  
       A    B   C    D 
(1, 0, 0) on Π:  [   1    0    0    1   |   0  ] 
(2, 3, 4) on Π:  [   2    3    4    1   |   0  ] 
(−1, 2, 1) on Π: [ −1    2    1    1   |   0  ] 
 
Row reduction leads to the reduced row echelon form 
 
   [   1    0    0       1     |   0  ] 
   [   0    1    0      9/5   |   0  ] 
   [   0    0    1    −8/5   |   0  ] 
 

( ) ( )9 8
5 5, , , , , , ,A B C D D D D D D⇒ = − − \∈

0

 
Select a convenient non-zero value for D that leaves all four coefficients as integers and 
makes at least two of A, B and C non-negative.   Therefore select D = − 5: 

5 9 8 5x y z+ − − =  
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Example 1.1.6  
 

Find the angle between the line 2 3: 1 ,
3 2

y zL x − −
= =   

and the plane . : 2 4x y zΠ − + =

 
 

1, 2,1 0,3,2 4
sin .4529

1 4 1 0 9 4 6 13n v
θ

− −
= = = ≈

+ + + + ×
n vK K ii

 

Therefore  
26.9θ ≈ °  

 
 
 
Example 1.1.7  
 
Find the intersection of the planes  
Π  1 :   x  −  2y  +    z  =  1    and  
Π  2 : 3x  −  5y  +  2z  =  4.  
 
Solve the under-determined linear system 
 
     x    y    z  
Π  1 [   1  −2   1  |  1  ] 
Π  2 [   3  −5   2  |  4  ] 
 
RR2  ←  R2  −  3 R1 :  [   1  −2     1  |  1  ] 
   [   0    1   −1  |  1  ] 
 
RR1  ←  R1  +  2 R2 :  [   1    0   −1  |  3  ] 
   [   0    1   −1  |  1  ] 
 
⇒ x  =  t  +  3 , 
 y  =  t  +  1 ,  
 z  =  t ,  t 0 ú 
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Example 1.1.7 (continued)  
 

3 1
1 1 1

x y zt 0− − −
⇒ = = =  

 
The intersection is a LINE. 
In vector parametric form, it is  
 

r  =  a  +  t v ,   with   a  =  +3, 1, 0,   and   v  =  +1, 1, 1, . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Summary for Lines and Planes:  
 
 Vector forms Cartesian form 

Line 

 
t= +r aK K vK  

 
a = point on line, 
v = direction vector 

o o

1 2

o

3

x x y y z
v v

z
v

− − −
= =  

o o o

1 2 3

where , ,
and , ,

x y z
v v v

=
=

a
v

K
K  

Plane 

s t= + +r a uK K vK K , 
a = point on plane, 
u, v = vectors in plane 
OR 

=r n a nK K K KiK K K
i
v

, where 
= ×n u  

 
 
Ax + By + Cz + D  =  0 , 
 

, ,A B C=nK  
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1.3 Area, Arc Length, Tangents and Normals, Curvature  
 

 

( )
b

a

A f x= ∫ dx  

With parameterization: 
b

a

t

t

dxA y
dt

= ∫ dt  

 
where   x(ta)  =  a ,   x(tb)  =  b ,  a < b  and   f (x) > 0  on  [a, b].  
 
Example 1.3.1  
 
Find the area enclosed in the first quadrant by the circle  x2 + y2  =  4. 

 
 x  =  2 cos θ ,    y  =  2 sin θ . 

20

2 0

x

x

πθ

θ

= ⇒ =

= ⇒ =
 

2cos 2sindxx
d

θ θ
θ

= ⇒ = −  
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Example 1.3.1 (continued)  
 

( )( )
0 /

2

/ 2 0

2sin 2sin 4 sinA d
π

π

2

dθ θ θ θ θ⇒ = − = +∫ ∫  

( )
/ 2/ 2

00

1
2

14 1 cos2 2 sin 2
2

d
ππ

θ θ θ θ⎡ ⎤= − = −⎢ ⎥⎣ ⎦∫  

( )2 0 0 0
2
π⎧⎛ ⎞= − − −⎨⎜ ⎟
⎝ ⎠⎩ ⎭

⎫
⎬  Therefore 

A π=  
 
Check:  The area is the interior of a quarter-circle. 

 ( ) ( )2 21 1 2
4 4

rπ π π= =  

 
 
 
 
 
 
 
 
 
 
Review of the Tangent:  
 

 

 , ,dx dy dz d
dt dt dt dt

= =
rT
KK

 

The unit tangent is 
 

l d d
dt dt

= ÷
r rT
K K

 

 

 



ENGI 2422 Fundamentals – Arc Length, Tangent Page 1-14 

 

Arc Length  
 
In ú2:  
 
 
( ) ( ) ( )2 2s xΔ ≈ Δ + Δ 2y

2z

 
 
 
 
In ú3:  
 
 
( ) ( ) ( ) ( )2 2 2s x yΔ ≈ Δ + Δ + Δ  
 

2 2 2ds dx dy dz d
dt dt dt dt dt

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⇒ = + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

rK
 

 
 
 

The vector d
dt
rK  points in the direction of the tangent T

K
to the curve defined parametrically 

by r = r(t). 
 

l

l

d d d ds d d
dt dt dt dt dt ds
d
ds

⇒ = ÷ = ÷ = ×
t

∴ =

r r r rT

rT

K K K K

K  
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Example 1.3.2  
 
(a) Find the arc length along the curve defined by 
 ( )1 1

4 42 sin 2 , cos 2 , sint t t= −rK t , from the point where t = 0 to the point 
where t = 4π. 

(b) Find the unit tangent lT . 
 

(a) ( ) ( ) ( )2 21 2 12 2cos 2 1 cos 2 2sin sin
4 4 2

dx t t t
dt

= − = − = = t  

 

 ( ) ( )1 22sin 2 2sin cos sin cos
4 4

dy t t t
dt

= − = − = − t t  

 

 cosdz t
dt

=  

 
2sin , sin cos , cosd t t t

dt
⇒ = −

rK t  

 

( )4 2 2 2 2 2 2

2 2

sin sin cos cos sin sin cos cos

1sin cos 1

ds d t t t t t t t
dt dt

t t

⇒ = = + + = + +

= + =

rK 2 t
 

 

[ ]
4

4

0
0

1 1ds s dt t
dt

π
π= ⇒ = =∫  

 
Therefore  

4s π=  
 
(b)  

 l d d
dt dt

= ÷
r rT
K K

 

( )But 1 "for all "d t t
dt

= ∀
rK .  Therefore 

 
l 2sin , sin cos , cost t t= −T t  

 
[Note that, in this example, | t | itself is the arc length from the point (0, 1/4, 0), (where 
t = 0).   There are very few curves for which the parameterization is this convenient!] 
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Review of Normal and Binormal:  
 
l l l1 1= ⇒ =T T Ti  

 
l l l l l l

0 2d d d
ds ds ds

⇒ + = ⇒
T T TT T Ti i i 0=  

 
l l lord d

ds ds
⇒ = ⊥

T T0
K

T  (Note:  a unit vector can never be zero). 

 
Select the principal normal  to be the direction in which the unit tangent is, 
instantaneously, changing: 

N
K

 
l ld d

ds dt dt
= = ÷

T TN
K ds  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The unit principal normal then follows:  
 

l l ld d
dt dt

= ÷
T TN  

 
The binormal is at right angles to both tangent and principal normal: 

l l l= ×B T N  
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Curvature:  
 
The derivative of the unit tangent with respect to distance travelled along a curve is the 

principal normal vector, 
ld

ds
=

TN
K

.   Its direction is the unit principal normal .   Its 

magnitude is a measure of how rapidly the curve is turning and is defined to be the 
curvature:  

lN

l ld d d
ds dt dt

κ = = = ÷
T TN rKK

 

 
lκ⇒ =N N

K
 

 

The radius of curvature is 1ρ
κ

= . 

The radius of curvature at a point on the curve is the radius of the circle which best fits 
the curve at that point. 
 
 
 
Example 1.3.2 (continued)  
 
(c) Find the curvature  κ(s)  at any point for which s > 0, for the curve  
 ( ) ( )1 1

4 42 sin 2 , cos 2 , sins s s s= −rK s  
 where  s  is the arc length from the point (0, 1/4, 0). 
 
From part (b): 
l 2sin , sin cos , coss s s= −T s  

 
l

2 22sin cos , cos sin , sin sin 2 , cos 2 , sind s s s s s s s s
ds

⇒ = − + − = − −
T  

 

( )
l

21 sinds s
ds

κ⇒ = = +
T

 

2

1 1
1 sin s

ρ
κ

⇒ = =
+
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Another formula for curvature:  
 

Let and , thend ds ds
dt dt dt

= = = =
r rr r
K KK K� ��  

 ls=r TK� �  

l lds s
dt

⇒ = +
Tr TK�� �� �  

 
l l l( )But d ds s

ds dt
d
dt

κ= ⋅ =
TT N �  

 
 

l( ) l l( ) l2 3s s s sκ κ⇒ × = × + = +r r T T N 0 B
KK K� �� � �� � �  

 
 

3 , but . Therefores sκ⇒ × = =r r rK K K� �� �� �  
 

3κ
×

=
r r

r

K K� ��
K�  
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Example 1.3.3  
 
Find the curvature and the radius of curvature for the curve, given in parametric form by 
x  =  cos t ,    y  =  sin t ,   z  =  t .    Assume SI units. 
 
Let   c = cos t ,    s = sin t . 
 

( )
( )

, ,

, , 1

, , 0

c s t

s c

c s

=

= = −

= = − −

r

v r

a r

K

KK �
K K��

 

 

2 2

ˆ ˆ ˆ

1 , , , ,
0

s c s c s c s c
c s

× = − = + − + = + −
− −

i j k
r rK K� �� 1  

 
2 2 1 2s c= + + =  

 
2 2 1 2s c= + + =rK�  

 

3
2 1

22 2
κ

×
⇒ = = =

r r

r

K K� ��
K�

 

Therefore 
( )11

2 m constantκ −=  
and 

1 2mρ
κ

= =  
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1.4 Conic Sections  
 
All members of the family of curves known as conic sections can be generated, (as the 
name implies), from the intersections of a plane and a double cone.   The Cartesian 
equation of any conic section is a second order polynomial in x and y.   The only cases 
that we shall consider in this course are such that any axis of symmetry is lined up along 
a coordinate axis.   For all such cases, the Cartesian equation is of the form  

A x2  +  C y2  + D x + E y + F  =  0 
where A, C, D, E and F  are constants.   There is no “xy” term, so B = 0. 
 
The slope of the intersecting plane is related to the eccentricity, e of the conic section. 

 
 
 
 
 

 
 
 

 

 x2 + y2  =  r2  

 
 

A parametric form is  
(x, y) = (r cos θ, r sin θ ),   (0 < θ  < 2π). 
 

 
 
 
 
 
 
 
 
 
 

2 2

2 2 1x y
a b

+ =  

( )2 2where 1b a e= − 2  
The circle is clearly a special case of the ellipse, with  e = 0  and  b = a = r. 
The longest diameter is the major axis (2a).   The shortest diameter is the minor axis (2b). 
If a mirror is made in the shape of an ellipse, then all rays emerging from one focus will, 
after reflection, converge on the other focus. 
 
A parameterization for the ellipse is   ( ) ( )ˆ ˆcos sin , 0 2a bθ θ θ θ= + ≤ <j πr iK . 
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y2  =  4ax  
 
One vertex is at the origin. 
The centre and the other vertex and focus are at infinity. 
 
If a mirror is made in the shape of a parabola, then all rays emerging from the focus will, 
after reflection, travel in parallel straight lines to infinity (where the other focus is).   The 
primary mirrors of most telescopes follow a paraboloid shape. 
 
 

 
 
 
 
 
 
 
 
 

2 2

2 2 1x y
a b

− =  

( )2 2 2where 1b a e= −  
 
The hyperbola has two separate branches. 
As the curve retreats towards infinity, the curve approaches the asymptotes  

 
2 2

2 2 0 , .x y by
a b a

⎛ ⎞− = ⇒ = ±⎜ ⎟
⎝ ⎠

x  

The distance between the two vertices is the major axis (2a). 
If a mirror is made in the shape of an hyperbola, then all rays emerging from one focus 
will, after reflection, appear to be diverging from the other focus. 
 
Circles and ellipses are closed curves.   Parabolas and hyperbolas are open curves. 
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A special case of the hyperbola occurs when the eccentricity 
is 2e =  and it is rotated 45E from the standard orientation.   
The asymptotes line up with the coordinate axes, the graph 
lies entirely in the first and third quadrants and the Cartesian 
equation is   xy = k. 
 
This is the rectangular hyperbola. 
 
 
 
 
 
Degenerate conic sections arise when the intersecting plane passes through the apex of 
the cone.   Two cases are: 
 

2 2

2 20 1: x ye
a b

≤ < + = 0   point at the origin. 

 
2 2

2 21: 0x ye
a b

> − =   line pair through the origin. 

 
Another degenerate case is 

           
2 2

2 2 1x y
a b

+ = −  nothing ! 

 
Example 1.4.1  
 
Classify the conic section whose Cartesian equation is   3y2  =  x2  +  3 . 
 
Rearranging into standard form, 

2 2
2 23 3

1 3
y xy x− = ⇒ − = 1  

Compare with 
2 2

2 2 1: , , 1 , 3X Y X y Y x a b
a b

− = = = = =  

Therefore this is an hyperbola,  
rotated through 90°,  
with vertices at (0, ±1) and 

asymptotes 33 or
3

.x y y= ± = ± x  

 
[The asymptotes make angles of 30° with the x axis.]  
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Example 1.4.2  
 
Classify the conic section whose Cartesian equation is   21x2  +  28y2  =  168x  +  168y . 
 
Rearranging into standard form, first complete the square. 
 21x2  +  28y2  −  168x  −  168y  =  0 
⇒ 21(x2 − 8x)  +  28(y2 − 6y)  =  0 
⇒ 21((x − 4)2 − 16)  +  28((y − 3)2 − 9)  =  0 
⇒ 21(x − 4)2  +  28(y − 3)2  =  588 

( ) ( )2 24 3
1

28 21
x y− −

⇒ + =  

Compare this with the standard form 
2 2

2 2 1: 4 , 3 , 28 , 21X Y X x Y y a b
a b

+ = ⇒ = − = − = =  

The conic section is therefore an ellipse,  
semi major axis 28 , semi minor axis 21 ,  
(from which the eccentricity can be found to be exactly e  = 1/2), 
centre (4, 3). 
It happens to pass exactly through the origin. 

 
 
 
 
Moving up to three dimensions, we have the family of quadric surfaces. 
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1.5 Classification of Quadric Surfaces   
 
Again, we shall consider only the simplest cases, where any planes of symmetry are 
located on the Cartesian coordinate planes.   In nearly all cases, this eliminates “cross-
product terms”, such as xy, from the Cartesian equation of a surface.   Except for the 
paraboloids, the Cartesian equations involve only  x2, y2, z2  and constants. 
 
The five main types of quadric surface are:  
 
The ellipsoid (axis lengths  a, b, c)  
 

12

2

2

2

2

2
=++

c
z

b
y

a
x   

 
The axis intercepts are at 
(±a, 0, 0), (0, ±b, 0) and (0, 0, ±c). 
 
All three coordinate planes are 
planes of symmetry. 
 
The cross-sections in the three 
coordinate planes are all ellipses. 
 
Special cases:  
a = b > c :   oblate spheroid (a “squashed sphere”) 
a = b < c :   prolate spheroid (a “stretched sphere” or cigar shape) 
a = b = c :   sphere 
 
Hyperboloid of One Sheet   (Ellipse axis lengths   a ,  b ; aligned along the  z axis) 
 

12

2

2

2

2

2
=−+

c
z

b
y

a
x   

 
For hyperboloids, the central axis is 
associated with the “odd sign out”. 
 
In the case illustrated, the hyperboloid is 
aligned along the z axis. 
 
The axis intercepts are at 
(±a, 0, 0) and (0, ±b, 0). 
The vertical cross sections in the x-z and 
y-z planes are hyperbolae. 
All horizontal cross sections are ellipses. 
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Hyperboloid of Two Sheets  (Ellipse axis lengths   b ,  c ; aligned along the  x axis) 
 

12

2

2

2

2

2
=−−

c
z

b
y

a
x   

 
 
For hyperboloids, the 
central axis is associated 
with the “odd sign out”. 
 
In the case illustrated, the 
hyperboloid is aligned 
along the x axis. 
 
The axis intercepts are at 
(±a, 0, 0) only. 
 
Vertical cross sections 
parallel to the y-z plane are either ellipses or null. 

ll cross sections containing the x axis are hyperbolae. 

 
b ;  

ligned along the  z axis) 
 

 
A
 
 
Elliptic Paraboloid     
(Ellipse axis lengths   a ,  
a

2

2

2

2

b
y

a
x

c
z

+=    

ssociated with the “odd exponent out”. 

aboloid is 
ligned along the z axis. 

he only axis intercept is at the origin. 

tions in the x-z and y-z 

zontal cross sections are ellipses (for 

 

 
For paraboloids, the central axis is 
a
 
In the case illustrated, the par
a
 
T
 
The vertical cross sec
planes are parabolae. 
All hori
z > 0). 
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Hyperbolic Paraboloid    (Hyperbola axis length   a ;  aligned along the  z axis) 
 

2

2

2

2

b
y

a
x

c
z

−=    

 
For paraboloids, the central 
axis is associated with the 
“odd exponent out”. 
 
In the case illustrated, the 
paraboloid is aligned along 
the z axis. 
 
The only axis intercept is at 
the origin. 
 
The vertical cross section in the x-z plane is an upward-opening parabola. 
The vertical cross section in the y-z plane is a downward-opening parabola. 
All horizontal cross sections are hyperbolae, (except for a point at z = 0). 
 
The plots of the five standard quadric surfaces shown here were generated in the software 
package Maple.   The Maple worksheet is available from a link at  
"http://www.engr.mun.ca/~ggeorge/2422/programs/index.html". 
 
Degenerate Cases:   
 

02

2

2

2

2

2

=++
c
z

b
y

a
x  : A single POINT at the origin. 

 

02

2

2

2

2

2

=−+
c
z

b
y

a
x  : Elliptic CONE, aligned along the z axis; 

    [asymptote to both types of hyperboloid]. 
 

12

2

2

2

2

2

−=++
c
z

b
y

a
x  : NOTHING 

 

12

2

2

2

=+
b
y

a
x   : ELLIPTIC CYLINDER, aligned along the z axis. 

    

12

2

2

2

=−
b
y

a
x   : HYPERBOLIC CYLINDER, aligned along the z axis. 

   

2

2

a
x

b
y
=   : PARABOLIC CYLINDER, vertex line on the z axis. 
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02

2

2

2

=+
b
y

a
x   : LINE (the z axis)    

 

12

2

2

2

−=+
b
y

a
x   : NOTHING   

   

02

2

2

2

=−
b
y

a
x   : PLANE PAIR  (intersecting along the z axis)  

    
 

12

2

=
a
x    : Parallel PLANE PAIR    

 

02

2

=
a
x   : Single PLANE (the y-z coordinate plane)    

 

12

2

−=
a
x   : NOTHING   

 
Example 1.5.1  
 
Classify the quadric surface, whose Cartesian equation is   2x  =  3y2  +  4z2 . 
 
Rearranging into standard form, 

2 2

6 4 3
x y z
= +  

Compare to the standard form 
2 2

2 2 : , , , 2 , 3 ,Z X Y Z x X y Y z a b c
c a b

= + = = = = = = 6  

 
The quadric surface is therefore an elliptic 
paraboloid, aligned along the x axis, with its vertex at 
the origin. 
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Example 1.5.2  
 
Classify the quadric surface, whose Cartesian equation is   z2  =  1 + x2 . 
 
Rearranging into standard form, 
 z2  −  x2  =  1 
Compare to the standard form 

2 2

2 2 1: , , 1X Y X z Y x a b
a b

− = = = = =  

The quadric surface is therefore one of the 
degenerate cases. 
It is a hyperbolic cylinder, centre at the origin, 
aligned along the y axis. 
 
 
 
 
 
Example 1.5.3  
 
Classify the quadric surface, whose Cartesian equation is   x2   −  y2  +  z2  +  1  =  0 . 
 
Rearranging into standard form, 
 y2  −  x2  −  z2  =  1 
Compare to the standard form 

2 2 2

2 2 2 1: , , , 1X Y Z X y Y x Z z a b c
a b c

− − = = = = = = =  

The quadric surface is therefore an  
hyperboloid of two sheets,  
centre at the origin,  
aligned along the y axis. 
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1.6 Surfaces of Revolution   
 
Consider a curve in the x-y plane, defined by the equation  y = f (x). 
If it is swept once around the line  y = c , then it will generate a surface of revolution. 

 
At any particular value of x, a thin cross-section through that surface, parallel to the y-z 
plane, will be a circular disc of radius r, where  
 

( )r f x c= −  
 
Let us now view the circular disc face-on, (so that the x axis and the axis of rotation are 
both pointing directly out of the page and the page is parallel to the y-z plane). 

 
 

 
Let  (x, y, z)  be a general point on the surface of 
revolution. 
 
From this diagram, one can see that 
 
 r2  =  (y − c)2  +  z2   
 
Therefore, the equation of the surface generated, 
when the curve  y = f (x)  is rotated once around 
the axis  y = c , is 
 

 

( ) ( )( )22 2y c z f x c− + = −  
 
Special case:  When the curve  y = f (x)  is rotated once around the x axis, the equation of 
the surface of revolution is  

( )( )22 2y z f x+ =    or   ( )2 2y z f x+ =  
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Example 1.6.1  
 
Find the equation of the surface generated, when the parabola  y 2  =  4ax  is rotated once 
around the x axis. 
 
The solution is immediate:  
 

y2  +  z2  =  4ax , 
 
which is the equation of an elliptic paraboloid,  
(actually a special case, a circular paraboloid). 
 
 
 
 
 
 
 
 
 
The Curved Surface Area of a Surface of Revolution  
 
For a rotation around the x axis,  
 

the curved surface area swept out by the element of arc 
length  Δs  is approximately the product of the 
circumference of a circle of radius y with the length  Δs. 
 
 2A y sπΔ ≈ Δ  
 
Integrating along a section of the curve  y = f (x)  from 
x = a  to  x = b, the total curved surface area is 
 
 

( )2
x b

x a
A f xπ

=

=
= ∫ ds  

 
For a rotation of  y = f (x)  about the axis  y = c, the curved surface area is  

( ) ( )2 2
x b b

x a a

dsA f x c ds f x c
dx

π π
=

=
= − = −∫ ∫ dx  and   

2 2

1ds dy
dx dx

⎛ ⎞
⎜ ⎟  ⎛ ⎞= + ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Therefore 

( ) ( )( )2
2 1

b

a
A f x c f xπ ′= − +∫ dx  
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Example 1.6.2  
 
Find the curved surface area of the circular paraboloid generated by rotating the portion 
of the parabola y 2 = 4cx  (c > 0) from x = a ( > 0)  to  x = b about the x axis. 
 

2
x b

x a
A yπ

=

=
= ∫ ds  

 
2 24 2 4 cy cx y y c y

y
′ ′= ⇒ = ⇒ =  

 
2 2 2

2

4 41 1 1
4

ds dy c c x c
dx dx y cx x

+⎛ ⎞⇒ = + = + = + =⎜ ⎟
⎝ ⎠

 

 

( )1/ 22 2 4
b b

a a

x cA cx dx c x c
x

π π+
⇒ = = +∫ ∫ dx  

 

 ( )3/ 2

3
2

4
b

a

x c
cπ
⎡ ⎤+

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Therefore 
 

( ) ( )( )3/ 2 3/ 28
3

cA b c aπ
= + − + c  
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1.7 Hyperbolic Functions  
 
When a uniform inelastic (unstretchable) perfectly flexible cable is suspended between 
two fixed points, it will hang, under its own weight, in the shape of a catenary curve.   
The equation of the standard catenary curve is most concisely expressed as the hyperbolic 
cosine function,  y = cosh x, where  
 

cosh
2

x xe ex
−+

=  

The solutions to some differential equations can be expressed conveniently in terms of 
hyperbolic functions. 
 
The other five hyperbolic functions are  

sinh
2

x xe ex
−−

=  , 

 
sinh 1 2tanh , sech ,
cosh cosh

x x

x x x

x e ex x xx e e x e e

−

− −

−
= = = =

+ +
 

 
1 1coth and csch .

tanh sinh

x x 2
x x x

e ex x xx e e x e e

−

− −

+
= = = =

− −
 

 
Unlike the trigonometric functions, the hyperbolic functions are not periodic. 
However, parity is preserved:    
Of the six trigonometric function, only  cos θ  and  sec θ  are even functions. 
Of the six hyperbolic functions, only  cosh θ  and  sech θ  are even functions. 
The other functions are odd. 
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There is a close relationship between the hyperbolic and trigonometric functions. 
 
From the Euler form for e jθ ,   e jθ  =  cos θ  +  j sin θ ,  
   ⇒  e –jθ  =  cos θ  –  j sin θ  

( ) ( )1sin sinh sinh
2

j je e j j j
j j

θ θ

θ θ θ
−−

= = = −  

 
 

( )cos cosh
2

j je e j
θ θ

θ θ
−+

= =  

 
 

( )
( ) ( ) ( )sinhsin 1tan tanh tanh

cos cosh
j

j j j
j j j

θθθ θ θ
θ θ

⇒ = = = = −  

 
 
Identities:  
 
Let   x = jθ : 

 sin2θ  +  cos2θ    ≡   1    ⇒  
2

2
2

sinh cosh 1x x
j

⎛ ⎞
+ ≡ ⇒⎜ ⎟

⎝ ⎠
 

 
cosh2x   −  sinh2x    ≡   1 

 
 

 1 +  tan2θ    ≡   sec2θ     ⇒  
2

2 2

tanh 11
cosh

x
j x

⎛ ⎞ ⎛ ⎞+ ≡ ⇒⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

1   −  tanh2x    ≡   sech2x 
 

etc. 
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Derivatives  
 

( )sinhd x
dx

=
2 2

x x xd e e e e
dx

− −⎛ ⎞− +
=⎜ ⎟

⎝ ⎠

x

 

 
Therefore 

( )sinh coshd x x
dx

=  

 

( )coshd x
dx

=
2 2

x x xd e e e e
dx

− −⎛ ⎞+ −
=⎜ ⎟

⎝ ⎠

x

 

 
Therefore 

( )cosh sinhd x x
dx

= +  

[Note the different sign from the trigonometric version,  (cos x) '  =  − sin x .] 
 
 

( )tanhd x
dx

=
( )( ) ( )( )

2 2

cosh cosh sinh sinhsinh 1
cosh cosh cosh

x x x xd x
dx x x x

−⎛ ⎞ = =⎜ ⎟
⎝ ⎠

 

 
Therefore 

( ) 2tanh sechd x x
dx

=  

 
OR 
 
Let   x = jθ , then  θ  =  −jx  
 
  tanh(jθ)  =  j tan θ   
 
⇒ tanh x  =  j tan(−jx) 
 

( ) ( )( ) ( ) ( )2 2tanh sec sec secd x j j x j j x
dx

2θ⇒ = − × − = + − =  

 
 =  sech2(jθ)  =  sech2x . 
 

Therefore   ( ) 2tanh sechd x x
dx

=  



ENGI 2422 Fundamentals – Hyperbolic Functions Page 1-35 

( )cschd x
dx

= ( )( ) ( ) (1 2sinh sinh coshd )x x x
dx

− −= −  

 

 1 cosh
sinh sinh

x
x x

= − ⋅  

 
Therefore  

( )csch csch cothd x x x
dx

= −  

 etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A list of identities and derivatives for hyperbolic functions is presented in the suggestions 
for a formula sheet, in Appendix A to these lecture notes. 
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1.8 Integration by Parts  
 
Review: 
Let  u(x)  and  v(x)  be functions of  x.   Then, by the product rule of differentiation, 
 

( )d duuv v u
dx dx dx

dv
= ⋅ + ⋅  

 
Integrating with respect to  x : 
 
 [ ]uv u v dx uv dx′ ′= +∫ ∫  

 
This leads to the formula for integration by parts: 
 

[ ]uv dx uv u v dx′ ′= −∫ ∫  

 
Example 1.8.1  
 
Find 

23 xI x e dx−= ∫ . 

 
[v'  must be identified with a factor of the integrand that can be antidifferentiated easily.] 
 
 

221
2 2 xu x v x e−′= − = −  

 
2xu x v e−′⇒ = − =  

 
[ ] 2 221

2
x xx eI uv u x edx dv x− −⎡′⇒ = − ⎤− − −⎣ ⎦=∫ ∫  

 
( )2 21 1

2 2
xe x−= − − + C  

Therefore 
( ) 221

2 1 xI x e−= − + + C  

 



ENGI 2422 Fundamentals – Integration by Parts Page 1-37 

 

Example 1.8.2  [Repeated use of integration by parts] 
 
Find 2 cosI x x d= ∫ x . 

 
 u  =  x2  v'  =  cos x  
 
⇒ u'  =  2x  v  =   sin x  
 

2 sin 2 sin
u v

I x x x x d
′

⇒ = − ⋅∫�� ��� x  

 
Using integration by parts again,  with   u = 2x   and   v'  =  sin x , 
 
 u'  =  2  v  =  − cos x  
 

( )2 sin 2 cos 2 cosI x x x x x dx⇒ = − − − −∫  

 
 =  x2sin x  +  2x cos x  −  2 sin x  +  C  
 
Therefore  
 

( )2 2cos 2 sin 2 cosI x x dx x x x x= = − +∫ C+  

 
Check: 
 
I'  =  2x sin x  +  (x2 − 2) cos x  +  2 cos x  −  2x sin x  +  0 
 
    =  x2 cos x  T 
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Shortcut (a tabular form for repeated integrations by parts):  
 

2 cosI x x d= ∫ x : 

 
 
Reading off the diagonals, 
 
I  =  x2sin x  +  2x cos x  −  2 sin x  +  C  
 
 
Example 1.8.3  
 
Find  4 xI x e dx= ∫ . 

 
 
 
 
 
 
 
 
 
Therefore  
 
I  =  (x4  −  4x3  +  12x2  −  24x  +  24) ex  +  C   
 
Check: 
 
I'  =  (x4  −  4x3  +  12x2  −  24x  +  24  
    +  4x3  −  12x2  +  24x  −  24  +  0) ex   
    =  x4 ex   T 

Note:  
 
There are three ways the table can end: 
 
1) column 'D' reduces to 0 (as in the 

examples on this page); 
 
2) the product across a row is easy 

to integrate; 
 
3) the product across a row is a 

constant multiple of the original 
integrand. (ex. 1.8.4 next page) 
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Example 1.8.4  (recursive use of integration by parts) 
 
Find  sina xI e bx d= ∫ x . 

 
Either

 

 or 

  
  

2

2 2

cos sinax axbx bx aI e ae
b b

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

2

2 2sin cos
ax axe eI

b
 bI bx b bx I

a a
⎡ ⎤

= + − −⎢ ⎥
⎣ ⎦ a

 

  
2

21 a I
b

⎛ ⎞
⇒ +⎜ ⎟

⎝ ⎠
=  

[ ]2 sin cos
a xe a bx b bx

b
−  

2

21 b I
a

⎛ ⎞
⇒ +⎜ ⎟

⎝ ⎠
=  

[ ]2 sin cos
a xe a bx b bx

a
−  

( ) [ ]2 2 sin cosa xa b I e a bx b bx+ = −  ( ) [ ]2 2 sin cosa xa b I e a bx b bx+ = −  
  
 
Therefore  
 

( )2 2 sin csi on sax
axe a bx b bx C

a b
e bx dx − +

+
=∫  

Check:  
 
Let   s  =  sin bx   and   c  =  cos bx , then   s'  =  bc ,  c'  =  −bs  and  

( )2 2

axeI as bc C
a b

= −
+

+  

( ) ( ) (( )( )2 2

axd I e a as bc a bc b bs
dx a b

⇒ = − + − −
+

)  

( ) ( )2 2 2 2
2 2 2 2 sin

ax ax
axe ea s abc abc b s a b s e bx

a b a b
= − + + = + =

+ +
  T 
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1.9 Leibnitz Differentiation of a Definite Integral  
 

( )
( )

( )( ) ( )( ) ( )( )
( )

( )
, , ,

y g x y g x

y f x y f x

d dg dfH x y dy H x g x H x f x dy
dx dx dx x

= =

= =

∂
= − +

∂∫ ∫
H

 

 
If the limits of integration are both constant, then just differentiate the integrand with 
respect to x, treating all other terms as constants. 
 

( )( ),
b b

a a

d ff x t dt dt
dx x

∂
=

∂∫ ∫  

 
 
Example 1.9.1   
 

Evaluate  ( )
2

, where .
t

t
dI I t zt
dt

= ∫ dz  

 
Using Leibnitz differentiation: 
 

( )( ) ( ) ( )( ) ( ) ( )
2

2 2 1
t

t

dI d dt t t t t t z dz
dt dt dt

= × − × + ∫  

 
2 2

2 2 2
2

3 94 3
2 2

z t

z t

z tt t t
=

=

⎡ ⎤
= − + = + =⎢ ⎥

⎣ ⎦

2

2
t  

 
 
 
 
 
Directly: 
 

( )
2 2 22

2
4 3

2 2
t

t

t

t

z t tI t zt dz t t
⎡ ⎤ ⎛ ⎞−

= = = =⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠

∫
3

2
t  

 
3 23 9

2 2
d I d t t
dt dt

⎛ ⎞
⇒ = =⎜ ⎟

⎝ ⎠
 

 
See Problem Set 3 and Section 5.10 for more practical examples of Leibnitz 
differentiation. 
 

End of Chapter 1 
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1.2 Polar Coordinates   
 
The description of the location of an object in ú2 relative to the observer is not very 
natural in Cartesian coordinates:  “the object is three metres to the east of me and four 
metres to the north of me”, or (x, y) = (3, 4).   It is much more natural to state how far 
away the object is and in what direction:  “the object is five metres away from me, in a 
direction approximately 53° north of due east”, or (r, θ) = (5, 53°). 
 
Radar also operates more naturally in plane polar coordinates. 
 
r = range 
 
θ = azimuth 
 
O  is the pole 
 
OX  is the polar axis (where θ = 0) 

 
Anticlockwise rotations are positive. 
 
  [Nautical bearings are very different:  
  positive rotation is measured clockwise,  
  from zero at due north !] 
 
 
 

Example 1.2.01   
 
The point P with the polar coordinates (r, θ) = (4, π / 3)  
 
 
also has the polar coordinates 

 
 
 
 or  
 
 
 
 

 
     ( )34, 2 ππ +           ( )34, 2 ππ− +   
 

( )3or 4, 2 , any integern nππ + =  
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Example 1.2.01  (continued) 
 

 
 
The point ( )34, π π− +  is at P. 
 
So also is ( )34, 2 , any integern nπ π π− + + = . 
 
 
In general, if the polar coordinates of a point are (r, θ), then  
 
 

 ( ), 2r nθ π+     and    ( )( ), 2 1r nθ π− + +  
 
(n = any integer) 
also describe the same point. 
 
The polar coordinates of the pole are (0, θ) for any θ.  
 
In some situations, we impose restrictions on the range of the polar coordinates, such as 
  r > 0 ,  −π  <  θ  <  +π   for the principal value of a complex number in polar form. 
 

Conversion between Cartesian and polar coordinates: 
 

cosx r θ=   siny r θ=  
 
Inverse: 

2 2 2 2 2 2cos sin 2x y r rθ θ+ = + = r
⇒

 
2 2 2r x y∴ = +  

2 2r x= ± + y  
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sin tan
cos

y r
x r

θ θ
θ

= =   

  
Therefore Therefore 

tan y
x

θ =  

 
More information is needed in order to select the correct quadrant. 
 
Example 1.2.02   
 
Find the polar coordinates for the point whose Cartesian coordinates are (−3, 4). 
 

x  =  −3 ,   y  =  4 
 
r 2  =  9  +  16  =  25 
 
⇒ r  =  ± 5 
 

4tan
3

θ 4
3

= = −
−

 

 
(−3, 4) is in the second quadrant. 
 
If we choose  r > 0, then one value of  θ  is   θ  =  −Tan−1(4/3) + π  ≈  2.21 rad. 
 
One possibility: (r, θ)  =  (5, 2.21) (to 3 s.f.) 
 
Therefore, to 3 s.f.,   
 
 (r, θ)  =  (5, 2.21 + 2nπ)  or  (−5, 2.21 + (2n+1)π) , ( )n∈  
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Example 1.2.03   
 
Find the Cartesian coordinates for ( ) ( )11

3, 2,r .πθ = −  
 

( ) ( )1 1211 2 2
3 3 3

ππ π π
−

− = = + −  

 
 

3cos 2 cos 1x r πθ= = =  
 

3sin 2 sin 3y r πθ= = =  
 
Therefore  

( ) ( ), 1,x y = 3  

 
 
 
 
 
 
 
 
 
Polar Curves    r  =  f (θ)    
 
The representation (x, y) of a point in Cartesian coordinates is unique.   For a curve 
defined implicitly or explicitly by an equation in x and y, a point (x, y) is on the curve if 
and only if its coordinates (x, y) satisfy the equation of the curve. 
 
The same is not true for plane polar coordinates.   Each point has infinitely many possible 
representations, ( ), 2r nθ π+   and  ( )( ), 2 1r nθ π− + + (where  n  is any integer).   A 

point lies on a curve if and only if at least one pair (r, θ) of the infinitely many possible 
pairs of polar coordinates for that point satisfies the polar equation of the curve.   It 
doesn’t matter if other polar coordinates for that same point do not satisfy the equation of 
the curve. 
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Example 1.2.04   
 
The curve whose polar equation is   
 r  =  1  +  cos θ   
is a cardioid  
(literally, a “heart-shaped” curve). 
 
{ r = 2,  θ  = 2nπ }  
(where n is any integer)  
satisfies the equation  r  =  1  +  cos θ . 
 
⇒ (r, θ)  =  (2, 2nπ)  is on the 
cardioid curve. 
 
But (2, 2nπ) is the same point as (−2, (2n+1)π). 
 
θ  =  (2n+1)π    ⇒    1  +  cos θ  =  0  ≠  r . 
 
Yet the point whose polar coordinates are (−2, (2n+1)π) is on the curve! 
 
 
 
 
Example 1.2.05   
 
Convert to polar form the equation  

2 2 2 2 3x y x y+ = + + y  . 
 
 r 2  =  r  +  3r sin θ   
 
⇒ r ( r − 1 − 3 sin θ )  =  0 
 
⇒ r  =  0    or    r  =  1  +  3 sin θ  
 
But  ( )( )1

30, arcsin −  is a solution of   r  =  1  +  3 sin θ  

 
⇒ r  =  0   is included in   r  =  1  +  3 sin θ . 
 
Therefore the polar equation of the curve is  

r  =  1  +  3 sin θ 
(which is a limaçon). 
 
Note that there is no restriction on the sign of r ;  it can be negative.  
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Example 1.2.06   
 
Convert to Cartesian form the equation of the cardioid curve   r  =  1  +  cos θ . 
 

 1 xr
r

= +  

 
⇒ r 2  =  r  +  x   
 
⇒ r 2  −  x  =  r     
 
⇒ (r 2  −  x)2  =  r2  
 
Therefore  

(x 2 + y 2 − x) 2  =  x 2 + y 2 
 
 
 
 
Tangents to  r  =  f (θ)   
 
x  =  r cos θ  =  f (θ) cos θ   
 
y  =  r sin θ  =  f (θ) sin θ   
 
By the chain rule for differentiation: 
dy dy d dy dx
dx d dx d d

θ
θ θ θ

= ⋅ = ÷  

This leads to a general expression for the slope anywhere on a curve  r  =  f (θ) : 
 

sin cos

cos sin

dr rdy d
drdx r
d

θ θ
θ

θ θ
θ

+
=

−
 

 

( )0 and 0 at ,dy dx r
d d

θ
θ θ
= ≠ ⇒  horizontal tangent at (r, θ) . 

 

( )0 and 0 at ,dx dy r
d d

θ
θ θ
= ≠ ⇒  vertical tangent at (r, θ) . 
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At the pole  (r = 0):  
 
 

sin 0
tan provided 0

cos 0

dr
drd

d
d

x
d

y
d r d

θ
θ θ

θθ
θ

+ ⎛ ⎞= ≠⎜
⎝−

= ⎟
⎠

 

 

If  r → 0  but  dr
dθ

→ 0   as  θ  → θo , then  

the radial line  θ  = θo is a tangent at the pole. 
[This can be of some help when sketching polar curves.]  
 
 
 
 
 
 
 
 
 
Example 1.2.07   
 
Sketch the curve whose equation in polar form is  r  =  cos 2θ . 
 
Two methods will be demonstrated here.   The first method is a direct transfer from a 
Cartesian plot of r against θ  (as though the curve were  y = cos 2x).   The second method 
is a systematic tabular method, involving investigation of the behaviour of the curve in 
intervals of θ  between consecutive critical points (where r and/or its derivative is/are 
zero or undefined). 
 
Method 1. 
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Method 2. 
 
r = cos 2θ  = 0  at  2θ  =  (any odd multiple of π/2) 
⇒ r = 0  at  θ  =  (any odd multiple of π/4) 

2 sin 2 0 at 2dr
d

θ θ
θ

= − = = (any integer multiple of π) 

⇒ r' = 0  at  θ  =  (any integer multiple of π/2) 
Therefore tabulate in intervals bounded by θ  =  (consecutive integer multiples of π/4). 
 

2θ 0 → π/2 π/2 → π π → 3π/2 3π/2 → 2π 2π → 5π/2 ... 

θ 0 → π/4 π/4 → π/2 π/2 → 3π/4 3π/4 → π π → 5π/4 ... 

r 1 → 0 0 → −1 −1 → 0 0 → 1 1 → 0 ... 

Region 
in 

sketch 
(1) (2) (3) (4) (5)  

 
 
 
This leads to the same sketch as in Method 1 above. 
 
You can follow a plot of  r  =  cos nθ  by Method 1 (for n = 1, 2, 3, 4, 5 and 6) on the web 
site.   See the link at "http://www.engr.mun.ca/~ggeorge/2422/programs/". 
 
The distinct polar tangents are  
 

 
4
πθ = ±  
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Length of a Polar Curve   
 
If   r  =  f (θ)  (for  α < θ < β), then  
 
x  =  f (θ) cos θ   and   y  =  f (θ) sin θ  
 
Let   r  =  f (θ) ,    r'  =  f ' (θ),   c  =  cos θ   and   s  =  sin θ , then  
 

rx
d

cd r
θ

′ −= s   and ry
d
d  s cr
θ

′ +=

 
 

( )( ) ( )( )
2 2

2 22 2 2 22 2r c rcsr r s r s rcsrdx dy c
d d

r
θ θ

′ ′ ′ ′−⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ + + + +⎜ ⎟
⎝ ⎠ ⎝ ⎠

2 2  

 
 
  =  (r') 2(c 2 + s 2)  +  0  +  r 2(s 2 + c 2)  
 

          
2

2 drr
dθ

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

 
 
Therefore the length L along the curve  r  =  f (θ)  from  θ = α  to  θ = β  is  
 

2
2 drL r

d
β

α
dθ

θ
⎛ ⎞= + ⎜ ⎟
⎝ ⎠∫  

 
Example 1.2.08   
 
Find the length  L  of the perimeter of the cardioid  r = 1 + cos θ . 
 
α = 0 ,    β  =  2π . 
 
r  =  1 + cos θ  =  1 + c  
 

sindr s
d

θ
θ

= − = −  

 
2

2 drr
dθ

⎛ ⎞⇒ + ⎜ ⎟
⎝ ⎠

=  

1  +  2c  +  c 2  +  s 2  =  2  +  2c  
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Example 1.2.08  (continued) 
 
But   1 + cos 2x  =  2 cos 2x .   Set  θ  =  2x. 
 

2
2 22 2 cos

2
drr
d

θ
θ

⎛ ⎞ ⎛⇒ + =⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

 

 

2 2
2 2

0 0
2 cos 2 cos

2 2
L d d

π πθ θθ θ⇒ = =∫ ∫  

 
Using symmetry in the horizontal axis,  
 

( )
0

2

0 0
2 cos 4 cos 4 2 sin 8 1 0

2 2 2
L d d

ππ πθ θ θθ θ ⎡ ⎤= = = =⎢ ⎥⎣ ⎦∫ ∫ −  

 
Therefore the perimeter of the cardioid curve is  L = 8. 
 
 
 
Note: 

For   π  <  θ  <  2π ,    2cos cos
2 2
θ θ

= −  

and   
2

0

cos 0 !
2

d
π θ θ =∫  

 
 
Example 1.2.09   
 
Find the arc length along the spiral curve  r  =  a eθ  (a > 0), from  θ = α  to  θ = β . 
 

drr a e a e
d

θ θ

θ
= ⇒ =  

 

( ) ( )2 2
2ds a e a e a e

d
θ θ θ

θ
⇒ = + =  

 

2 2s a e d a e
β

β

α
α

θ θθ ⎡ ⎤⇒ = = ⎣ ⎦∫  

 

( )2L a e eβ α∴ = −  
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Area Swept Out by a Polar Curve   r  =  f (θ)   
 
ΔA  ≈  Area of triangle 
 
 ( )1

2 sinr r r θ= + Δ Δ  
 
But the angle Δθ  is small, so that  sin Δθ  ≈ Δθ  
and the increment  Δr  is small compared to r. 
Therefore  
 

21
2A r θΔ ≈ Δ ⇒  

 

  21
2

A r
β

α

dθ= ∫  

 
 
Example 1.2.10    
 
Find the area of a circular sector, radius  r , angle θ . 
 
r  =  constant,  β  =  α  +  θ   
 

( )( )2 2 21 1 1
2 2 2A r d r r

α θ α θ

αα
φ φ α

+ +
⎡ ⎤= = = +⎣ ⎦∫  θ α−

 
Therefore 
  21

2A rθ=  

 
Full circle:    θ  =  2π   and   A  =  πr 2 . 
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Example 1.2.11    
 
Find the area swept out by the polar curve  r  =  a eθ  over  α < θ < β ,  
(where  a > 0  and  α < β < α + 2π ). 
 
The condition (α < β < α + 2π ) 
prevents the same area being swept 
out more than once. 
  
If   β > α + 2π  then one needs to 
subtract areas that have been  
counted more than once  
[the red area in the diagram] 
 

( )2 2
21 1

2 2
eA a e d a
2

ββ

α α

θ
θ θ

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
∫  

 
Therefore  
 

  ( )
2

2 2

4
aA e eβ α= −  

 
 
 
 
 
 
In general, the area bounded by two polar curves  r  =  f (θ)  and  r  =  g(θ)  and the 
radius vectors  θ  =  α  and  θ  =  β  is  
 

( )( ) ( )( )( )2 21
2

A f g
β

α

dθ θ θ= −∫  

 
See the problem sets for more examples of polar curve sketching and the calculation of 
the lengths and areas swept out by polar curves. 
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Radial and Transverse Components of Velocity and Acceleration   
 

 
 
At any point P (not at the pole), the unit radial vector  points directly away from the 
pole.   The unit transverse vector  is orthogonal to  and points in the direction of 
increasing θ.   These vectors form an orthonormal basis for ú2. 

r̂
r̂θ̂

 
Only if θ is constant will  and  be constant unit vectors, (unlike the Cartesian i and j). r̂ θ̂
 
The derivatives of these two non-constant unit vectors can be shown to be 
 

ˆ ˆd d
dt dt

θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

r θ    and   
ˆ

ˆd d
dt dt

θ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

rθ
 

 
Using the “overdot” notation to represent differentiation with respect to the parameter t, 
these results may be expressed more compactly as  
 

ˆ ˆˆ ˆandθ θ= =r rθ θ −  
 
The radial and transverse components of velocity and acceleration then follow: 
 

ˆˆ ˆ ˆˆ r r r rr θ= ⇒ = = + = +r rr r rv r θ  
 

radial transverseandv r v rθ⇒ = =  
 
 

( ) ( )ˆ ˆˆ ˆr r r r r ˆθ θ θ+ + += = = +r ra v r θ θ θ  

( ) ( )( ) ( )2 2

transverseradial

ˆ ˆˆ ˆ ˆ2 2r r r r r r r r

aa

ˆθ θ θ θ θ θ= + + − = − + +r r rθ θ θ  

 

The transverse component of acceleration can also be written as ( )2
tr

1 da r
r dt

θ=  
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Example 1.2.12   
 
A particle follows the path  r = θ ,  where the angle at any time is equal to the time:  
θ = t > 0.   Find the radial and transverse components of acceleration. 
 
 r  =  θ  =  t  
 

1r θ⇒ = =  
 

0r θ⇒ = =  
 

ˆ ˆˆ ˆr r tθ= + = +v r rθ θ  
 

 ( )21v t⇒ = +  

 
( ) ( )2 ˆ ˆˆ ˆ2 2r r r r tθ θ θ= − + + = − +a r rθ θ  

 

 ( )24a t⇒ = +  

 
Therefore 
 
 ar  =  −t    and   atr  =  2 
 
 
 
 
 
 
Example 1.2.13   
 
For circular motion around the pole, with constant radius  r  and constant angular velocity 
θ ω= , the velocity vector is purely tangential, ˆrω=v θ , and the acceleration vector is  
  
 ( ) ( )2 2ˆˆ ˆ2r r r r rθ θ θ ω= − + + = −a r θ r  
 
which matches the familiar result that “centrifugal” or “centripetal” force = r ω 2, directed 
radially inward. 
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