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3. Ordinary Differential Equations   
 
Equations involving only one independent variable and one or more dependent variables, 
together with their derivatives with respect to the independent variable, are ordinary 
differential equations (ODEs).   Similar equations involving derivatives and more than 
one independent variable are partial differential equations (to be studied in a later term). 
 
 
3.1 Classification; Separation of Variables   
 
Example 3.1.1  
Unconstrained population growth can be modelled by  
 

(current rate of increase) is proportional to (current population level). 
 
With  x(t) = number in the population at time t,  
 

dx kx
dt

=  

 
This is a first order, first degree ODE that is both linear and separable. 
 
The order of an ODE is that of the highest order derivative present. 
The degree of an ODE is the exponent of the highest order derivative present. 
An ODE is linear if each derivative that appears is raised to the power 1 and is not 
multiplied by any other derivative (but possibly by a function of the independent 
variable), that is, if the ODE is of the form 

( ) ( )xR
dx

ydxa
n

k
k

k

k =⋅∑
=0

 

A first order ODE is separable if it can be re-written in the form 
f (y) dy  =  g(x) dx 

The solution of a separable first order ODE follows from  
( ) ( )∫∫ = dxxgdyyf  

Solution of Example 3.1.1: 

1dx dxk dt k dt
x x

= ⇒ =∫ ∫  

 
ln kt C kt Cx kt C x e e e+⇒ = + ⇒ = =  

 
Let  A = eC, then the general solution is  

x(t)  =  A ekt    (A > 0)   -    unconstrained exponential growth 
The value of the arbitrary constant  A  can be found if the value of  x  is known at any one 
value of  t.   Often this information is provided as an initial condition:   A = x(0). 
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Example 3.1.1  (continued) 
 
 
 
 
 
 
 
 
 
 

x(t)  =  A ekt    (A > 0)      . 
 
 
Example 3.1.2   
 
One of the simplest constrained growth (or predator-prey) models assumes that the rate of 
increase in  x, (the population as a fraction of the maximum population), is directly 
proportional to both the current population and the current level of resources (or room to 
grow).   In turn, the level of resources is assumed to be complementary to the population:  
resources  α  1 − x. 
 
This leads to the constrained population growth model 
 

( )xxk
dt
dx

−= 1  

 
Classification of this ODE:    1st order, 1st degree, non-linear, separable. 
 

( )1
dx k dt

x x
=

−∫ ∫  

 
Partial fractions: 

( )
1

1 1
A B

x x x
= +

− − x
 

 
Using the cover-up rule:  
 

1A =
( )

11
1 0 1

B= =
−

1=  

 

( )
1 1

1 1
1

x x x
= +

− − x
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Example 3.1.2  (continued) 
 

1 1 1
1

dx k dt
x x

⎛ ⎞⇒ + =⎜ ⎟−⎝ ⎠∫ ∫  

 
( )( )ln ln 1x x kt⇒ + − − = + C  

 

ln
1

x kt C
x

⎛ ⎞⇒ =⎜ ⎟−⎝ ⎠
+  

 

1
k t C k tx e A

x
+⇒ = =

−
e  

 
k t k tx A e x A e⇒ = −  

 
( )1 k t k tx A e A e⇒ + =  

 

( )
1

k t

k t
A ex t

A e
⇒ =

+
 

The graph is the logistic curve, (for constrained population growth). 
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In this course, the only first order ODEs to be considered will have the general form 
 

M(x, y) dx  +  N(x, y) dy  =  0 
 

with the following classification: 
 

Type Feature 
Separable M(x, y) = f (x) g(y) 

and 
N(x, y) = h(x) k(y) 

Reducible to 
separable 

 
 

M(tx, ty) = tn M(x, y) 
and 

N(tx, ty) = tn N(x, y) 
for the same n 

Exact 
x
N

y
M

∂
∂

=
∂
∂  

Linear M/N  =  P(x)y − R(x) 
or 

N/M  =  Q(y)x − S(y) 
Bernoulli 

 
 

M/N  =  P(x)y − R(x)yn 
or 

N/M  =  Q(y)x − S(y)xn 
[Only the separable, exact and linear types will be examinable.] 
 
Example 3.1.3  Terminal Speed 
 
A particle falls under gravity from rest through a viscous medium such that the drag force 
is proportional to the square of the speed.   Find the speed  v(t)  at any time  t > 0  and 
find the terminal speed  v∞.  

 
Newton’s Second Law:  
 

( )d dF mv m
dt dt

= =
v  

 
2dvm mg b

dt
= − v

=

 (Net force  =  weight  −  drag force) 

In standard form,  
( )

( )
( )
( )

( )

2 0

only c

,,

onst.

N t

bv mg dt m dv

vM t v

f v

− +

↑ ↑  ∴ type separable. 
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Example 3.1.3  (continued) 
 

2

m dv dt
mg bv

⇒ =
−

 

 

2

dv b dtmg mv
b

⇒ = −
−

∫ ∫  

 
2

2 2 wheredv b mgdt k
v k m b

⇒ = − =
−∫ ∫  

 
Partial fractions:  
 

( )( )
1 A

v k v k v k v k
= +

− + − +
B  

 
1A =
( )

1
2kk k

=
+

 

 

( )
1B

k k
=

− −

1
2k
−

=  

 

2 2

1 1 1 1
2v k k v k v k

⎛ ⎞⇒ = −⎜ ⎟− −⎝ ⎠+
 

 

( ) ( )( ) 1
1 ln ln

2
btv k v k C

k m
⇒ − − + = − +  

 

2 2
2ln ,

2 2where 2

v k kbt C pt C
v k m

kb b mg bgp
m m b m

−⎛ ⎞⇒ = − + = − +⎜ ⎟+⎝ ⎠

= = =

 

 
2pt C ptv k e A

v k
− + −−

⇒ = =
+

e  

 
⇒    v  −  k  =  v A e−pt  +  k A e−pt 
 
⇒    v (1  −  A e−pt)  =  k (1  +  A e−pt)  
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Example 3.1.3  (continued) 
 
General solution:  
 

( ) ( )1

1

pt

pt
k A e

v t
A e

−

−

+
=

−
 

Initial condition:  v(0)  =  0 
 

( )1
0 1

1
k A

A
A
+

⇒ = ⇒ = −
−

 

 
Complete solution: 
 

( ) 1 , where and 2
1

pt

pt
e mgv t k k p
e b

−

−
−

= ⋅ = =
+

bg
m

 

 
Terminal speed  v∞: 
 

( ) 1 0lim
1 0v

mgv v t k k
b∞ →∞

−
= = = =

+
 

 
Graph of speed against time: 
 
 
 
 
 
 
 
 

 
[For a 90 kg person in air,  b ≈ 1 kg m−1  →  k   ≈  30 ms−1   ≈  100 km/h. 
v(t)  is approximately linear at first, but air resistance builds quickly. 
One gets within 10 km/h of terminal velocity very fast, in just a few seconds.] 
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3.2 Exact First Order ODEs  
 
Method: 
 
The solution to the first order ordinary differential equation  
 

M(x, y) dx  +  N(x, y) dy  =  0 
 

can be written in the implicit form  
 

u(x, y)  =  c  ,  (where  c is a constant) 

0=
∂
∂

+
∂
∂

=⇒ dy
y
udx

x
udu     . 

 
If  M(x, y) and N(x, y) can be written as the first partial derivatives of some function u 
with respect to x and y respectively, then Clairaut’s theorem,  

yx
u

xy
u

∂∂
∂

≡
∂∂

∂ 22

 

leads to the test for an exact ODE:  
M N
y x

∂ ∂
=

∂ ∂  

 
from which either   

 u M d= ∫ x    

 (and use   uy  =  N  to find the arbitrary function of integration  f (y) ) 
 
or   

 u N d= ∫ y . 

 (and use   ux  =  M  to find the arbitrary function of integration  g(x) ) 
 
Note that these anti-derivatives are partial: 
In , treat y as though it were constant during the integration. u M d= ∫ x

y
 
In , treat x as though it were constant during the integration. u N d= ∫
 
 
 
 
After suitable rearrangement, a separable first order ODE is also exact,  
(but not all exact ODEs are separable). 
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Example 3.2.1  

Find the general solution of  xdy y e x
dx

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

. 

 
Rewrite as  ( ) ( ) 0x xy e x d e dy

NM

x− + =  

 
The test for an exact ODE is positive: 
 

xM Ne
y x

∂ ∂
= =

∂ ∂
 

( ) ( )
2

2
x x xu M dx y e x dx y e f= = − = − +∫ ∫ y  

where   f (y)  is an arbitrary function of integration. 
 

( )xu e f
y

∂ ′⇒ = +
∂

y  

 
But    N(x, y)  =  ex    ⇒   f'(y) = 0    ⇒   f (y) = c1  
 
Therefore    

2

1 22
x xu y e c c= − + =  

 
The general solution is  

2

2
xxy A e−

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

 

 
Check:  
 

( )
2

0
2

x xxy x e A− −⎛ ⎞
′ = + − +⎜ ⎟

⎝ ⎠
e  

 
⇒ y'  +  y  =  x e−x   
 
⇒ (y'  +  y) ex  =  x       
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Example 3.2.1 (alternative method) 

Find the general solution of  xdy y e x
dx

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

. 

 
Rewrite as  ( ) ( ) 0x xy e x d e dy

NM

x− + =  

 
The test for an exact ODE is positive: 
 

xM Ne
y x

∂ ∂
= =

∂ ∂
 

( )x xu N e u N dy e dy y e g x
y

∂
= = ⇒ = = = +

∂ ∫ ∫ x  

where   g(x)  is an arbitrary function of integration. 
 

( )xu y e g
x

∂ ′⇒ = +
∂

x  

 
But M   =   y ex  −  x     ⇒   g'(x)  =  −x  
 

( )
2

12
xg x c⇒ = − +  

 
2

1 22
x xu y e c c⇒ = − + =  

 
2

2
xxy A e−

⎛ ⎞
⇒ = +⎜ ⎟

⎝ ⎠
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Example 3.2.2    
 

Solve 1.dyxy
dx

=  

 
1 0d
x

x dy y⇒ − =  

M N
↑↑

separable. 
 
But 

0M N
y x

∂ ∂
= =

∂ ∂
 

Therefore the ODE is also exact. 
 

( )lnu M dx x f= = +∫ y  
 
⇒ uy  =  0  +  f '(y) 
 
But N  =  −y    ⇒    f '(y)  =  −y  
 

( )
2

12
yf y c⇒ = − +  

 

( )
2

1 2, ln
2
yu x y x c c⇒ = − + =  

 
( )2 2 lny A x⇒ = +  

 
Check:  
 

12 2 0dyy
dx x

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
⇒ xy y'  =  1     
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A separable first order ODE is also exact (after suitable rearrangement). 
 
 f (x) g(y) dx   +   h(x) k(y) dy   =   0 
 

( )
( )

( )
( )

0
f x k y

dx dy
h x g y

M N

⎛ ⎞ ⎛ ⎞
⇒ + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

0M N
y x

∂ ∂
⇒ = =

∂ ∂
 

 
Therefore exact !  
 
 
 
 
 
 
 
 
 
 
 
 
However, the converse is false:   an exact first order ODE is not necessarily separable. 
 
A single counter-example is sufficient to establish this. 
Example 3.2.1:  
 
 (y'  +  y) ex  =  x   
 
is exact, but not separable. 
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Example 3.2.3   
 
Find the equation of the curve that passes through the point (1, 2) and whose slope at any 
point (x, y)  is  2y / x . 
 
Solution by the method of separation of variables: 
 

2dy y
dx x

=  

 
This ODE is separable.    
 

2 ln 2lndy dx y x C
y x

= ⇒ =∫ ∫ +

)

 

 
( ) (2ln ln Cy A x A e⇒ = =  

 
⇒ y  =  A x2    (family of parabolae). 
 
But  (1, 2)  is on the curve 
 
⇒ 2  =  A (1)2 
 
Therefore y  =  2 x2   
 
 
 
Solution starting with the recognition of an exact ODE: 
 

22 0y dxdy y
dx

dy
x

x= ⇒ − =  

 

which is not exact. ( ) ( )2y x
y x

⎡ ⎤∂ ∂
≠ −⎢ ⎥∂ ∂⎣ ⎦

 

 

However,  2 1 0dx dy
x y

− =   is exact: 

2 10
y x x

⎛ ⎞∂ ∂⎛ ⎞ = = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠y
 

 



ENGI 2422 First Order ODEs - Exact Page 3-13 

Example 3.2.3  (continued) 
 

( )2 2 lnu M dx dx x f y
x

= = = +∫ ∫  

 
⇒ uy  =  0  +  f '(y) 
 

( )1 1But N f y
y y

′= − ⇒ = −  

 
⇒ f (y)  =  − ln y  +  c1   
 
⇒ u(x, y)  =  2 ln x  −  ln y  +  c1  =  c2   
 
⇒ ln y  =   ln x2  +  C   =  ln (A x2) 
 
⇒ y  =  A x2    (as before). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In general, if an exact ODE is seen to be separable, (or separable after suitable 
rearrangement), then a solution using the method of separation of variables is usually 
much faster. 
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Some Practice Questions   
 
Example 3.2.4   
 
Find the complete solution of  
 3x2y4 dx  +  4x3y3 dy  =  0 ,   y = 2  when  x = ½. 
 
P  =  3x2y4    and    Q  =   4x3y3  are both of the type   f (x) g(y). 
 
Therefore the ODE is separable. 

3 2

4 3

4 3 4 3y x dy dxdy dx
y x y

= − ⇒ = −∫ ∫ ∫ x∫  

⇒ 4 ln y  =  C  −  3 ln x   
 
⇒ ln y4  =  C  +  ln x−3  =  ln (A x−3)   
 
⇒ y4  =  A x−3    or    x3y4  =  A   
 
OR 
 
Py  =  12x2y3  =  Qx   
 
Therefore the ODE is exact. 
 
Exact method: 
 
Seek  u(x, y)  such that  

 2 4 3 33 and 4u ux y x
x y

∂ ∂
= =

∂ ∂
y  

⇒ u  =  x3y4  +  c1  =  c2   
 
The [implicit] general solution is  
 
 x3y4  =  A  
 
But  (0.5, 2)  lies on the curve 
 

( ) ( )
3 41

2 2 2A A⇒ = ⇒ =  
 
Complete solution:  
 

x3y4  =  2 
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Example 3.2.5   
 
Solve 
 (2xy + 2x) dx  +  (x2 + 1) dy  =  0 
 
P  =  2xy + 2x =  2x(y + 1)    and    Q  =   x2 + 1  are both of the type   f (x) g(y). 
 
Therefore the ODE is separable. 
 

2

2
1 1

dy x dx
y x

= −
+ +∫ ∫  

 

( ) ( ) 12
1 2ln 1 ln 1 ln

1
Ay x c

x
− ⎛ ⎞⇒ + = + + = ⎜ ⎟+⎝ ⎠

 

Therefore the general solution is 
 

(x2 + 1)(y + 1)  =  A 
 
OR 
 
Py  =  2x  =  Qx   
 
Therefore the ODE is exact. 
 
Exact method: 
 
Seek  u(x, y)  such that  

 ( ) 22 1 andu ux y x
x y

∂ ∂
= + =

∂ ∂
1+  

 
⇒ u  =  (x2 + 1)(y + 1)  =  A 
 
If one cannot spot the functional form for  u(x, y), then 
 

( ) ( ) ( ) ( )22 1 1 2 1u M dx x y dx y x dx y x f y= = + = + = + +∫ ∫ ∫  
 
⇒ uy  =  x2  +  f '(y) 
 
But N  =  x2  +  1    ⇒   f '(y)  =  1    ⇒   f (y)  =  y + c1   
 
⇒ u  =  x2(y + 1)  +  y  +  c1  =  c2   
 
Let A  =  c2  −  c1 +  1 , then   (x2 + 1)(y + 1)  =  A 
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Example 3.2.6   
 
Solve 
 ( ) ( )( ) ( ) ( )( )cos sin 2cos sin 0x y y x y dx x y y x y dy− + − − − + − =  
 
cos (x − y)  cannot be expressed in the form     f (x) g(y). 
 
This ODE is not separable. 
 
 P  =  cos (x − y)  +  y  sin (x − y) 
 
⇒ Py  =  +1 sin (x − y)  +  1 sin (x − y)  −  y cos (x − y) 
 
 Q  =  −2 cos (x − y)  −  y  sin (x − y) 
 
⇒ Qx  =  +2 sin (x − y)  −  y cos (x − y)  =  Py   
 
Therefore the ODE is exact. 
 
Seek  u(x, y)  such that  

 ( ) ( ) ( ) ( )cos sin and 2cos sinu ux y y x y x y y x y
x y

∂ ∂
= − + − = − − − −

∂ ∂
 

 
⇒ u  =   sin (x − y)  −  y cos (x − y)  =  A 
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3.3 Integrating Factor   
 
Before introducing the general method, let us examine a specific example. 
 
Example 3.3.1   
 
Convert the first order ordinary differential equation  
 
 2y dx  +  x dy  =  0 
 
into exact form and solve it, (without direct use of the method of separation of variables). 
[Note, this ODE is different from Example 3.2.3.] 
 
The ODE is separable and we can therefore rearrange it quickly into an exact form: 
 

 2 1 0dx dy
x y

+ =  

 
However, let us seek a more systematic way of converting a non-exact form into an exact 
form. 
 
Let  I(x, y)  be an integrating factor, such that  {(the ODE) × I(x, y)} is exact:   
 
 2 0y I dx x

NM
I dy⋅ + ⋅ =  

 
My  =  2I  +  2y Iy   
 
Nx  =  I  +  x Ix   
 
We need a simplifying assumption (in order to avoid dealing with partial differential 
equations). 
 
Suppose that  I  =  I (x),  then 
 
Iy  =  0    and   Ix  =  I' (x) 
 
My  =  Nx     ⇒    2I  +  0   =   I  +  x I' (x) 
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Example 3.3.1  (continued) 
 

d Ix I
d x

⇒ =  

 
d I d x
I x

⇒ =∫ ∫  

 
⇒ ln I  =  ln x  +  C   =  ln (Ax)  
 
⇒ I (x)  =  Ax   
 
 
 
 
 
 
Multiplying the original ODE by I (x), we obtain the exact ODE (different from the 
separable-and-exact form) 
 
 2y Ax dx  +  A x2 dy  =  0 
 
A  is an arbitrary constant of integration.   Any non-zero choice for A allows us to divide 
the new ODE by that choice, to leave us with the equivalent exact ODE 
 
 2xy dx  +  x2 dy  =  0 
 
Therefore, upon integrating to find the integrating factor  I (x), we can safely ignore the 
arbitrary constant of integration. 
 
If we notice that  

 ( )2 2 Mx y xy
x
∂

= =
∂

 

and 

 ( )2 2x y x
y

N∂
=

∂
=  

then we can immediately conclude that  
 
 u  =  x2y  =  c 
 
so that the general solution of the original ODE is  

2

cy
x

=
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Example 3.3.1  (continued) 
 
If we fail to spot the form for the potential function  u, then we are faced with one of the 
two longer methods:  
 
Either  
 
        ( )22 2u M dx xy dx y x dx yx f y= = = = +∫ ∫ ∫  

( )( ) ( )2 2
yu x y f y x f

y
∂ y′⇒ = + = +
∂

 

But   N  =  x2    ⇒   f '(y)  =  0    ⇒   f (y)  =  c1   
 
⇒    u  =  x2y  +   c1  =  c2      ⇒   x2y  =  A   
 

2

Ay
x

⇒ =  

 
or  
 
        ( )2 2 21u N dy x dy x dy x y g x= = = = +∫ ∫ ∫  

( )( ) ( )2 2xu x y g x xy g
x
∂ x′⇒ = + = +
∂

 

But   M  =  2xy    ⇒   g'(x)  =  0    ⇒   g(x)  =  c1   
 
⇒    u  =  x2y  +   c1  =  c2      ⇒   x2y  =  A   
 

2

Ay
x

⇒ =  

 
The functional form for the integrating factor for an ODE is not unique. 
In example 3.3.1,  I(x, y)  =  Ax2n+1yn  is also an integrating factor, for any value of  n  
and for any non-zero value of  A. 
 
Proof:  
ODE    2y dx  +  x dy  =  0   becomes 

  2 1 1 2 22 0n n n n

M N
A x y dx x y dy+ + +
⎛ ⎞
⎜ ⎟+ =
⎜ ⎟
⎝ ⎠

( ) 2 12 1 n nM n x y
y

+∂
⇒ = +

∂
 

( ) 2 1and 2 2 the transformed ODE is exact.n nN Mn x y
x y

+∂ ∂
= + = ⇒

∂ ∂
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Example 3.3.1  (continued) 
 
One can show that the corresponding potential function is  

( ) ( ) ( )

( ) ( ) ( )

2

1 2

2
1 2

1

, 1
1

, ln 1

n
x y

u x y c c n
n

u x y x y c c n

+

= + = ≠
+

= + = =

−

−

 

both of which lead to  
2

2

Ax y A y
x

= ⇒ =  

 
 
Checking our solution: 
 

2 22 0dyx y A xy x
dx

= ⇒ + =  

 
22 0xy dx x dy⇒ + =

0

 
 
Dividing by  x : 
 

( )2 0y dx x dy x+ = ≠  
 
which is the original ODE.     
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Integrating Factor – General Method:   
 
Occasionally it is possible to transform a non-exact first order ODE into exact form.  
Suppose that  

P dx  +  Q dy  =  0 
is not exact, but that  

IP dx  +  IQ dy  =  0 
is exact, where  I (x, y)  is an integrating factor.  
 
Then, using the product rule,  
 

M I PP IM I P
y y

∂ ∂
= ⋅ ⇒

y
∂

= +
∂ ∂ ∂

 

and 
N I Q IN I Q Q
x x x

∂ ∂
= ⋅ ⇒

∂
= +

∂ ∂ ∂
 

 
From the exactness condition  
 

M N I I PQ P I
y x x y y

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= ⇒ − = ⋅ −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

Q
x

 

 
If we assume that the integrating factor is a function of  x  alone, then  
 

0d I P QQ I
d x y x

⎛ ⎞∂ ∂
− = ⋅ −⎜ ⎟∂ ∂⎝ ⎠

 

 
1 1d I P Q
I d x Q y x

⎛ ⎞∂ ∂
⇒ = −⎜ ⎟∂ ∂⎝ ⎠

 

This assumption is valid only if  ( )xR
x
Q

y
P

Q
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

⋅
1

 is a function of  x only. 

 

If so, then the integrating factor is ( ) ( )∫=
dxxR

exI   
 
[Note that the arbitrary constant of integration can be omitted safely.]   Then 

( ) ( ) etc.,,∫∫ ⋅∫== dxyxPedxMu
dxxR
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If we assume that the integrating factor is a function of  y  alone, then  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

⋅=⋅−
x
Q

y
PIP

dy
dI0     ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

⋅=⋅⇒
y
P

x
Q

Pdy
dI

I
11  

This assumption is valid only if  (yR
y
P

x
Q

P
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

⋅
1 )  a function of  y only. 

 

If so, then the integrating factor is ( ) ( )∫=
dyyR

eyI  and 
 

( ) ( ) etc.,,∫∫ ⋅∫== dyyxQedyNu
dyyR

 

 
 
 
Example 3.3.2   
 
Solve the first order ordinary differential equation  
 
 ( ) ( )2 2 21

23 6 3

P

x y xy y dx x y dy

Q

+ + + + = 0  

 
The ODE is not separable. 
 
Py  =  3x2  +  6x  +  y   
 
Qx  =  6x  +  0  ≠  Py   
 
Therefore the ODE is not exact. 
 
Py  −  Qx  =  3x2  +  y   
 

( )
2

2

3 1
3

y xP Q x y R x
Q x y
− +

⇒ = = =
+

 

 

( ) ( ) 1R x dx dx xI x e e e∫ ∫= = =  [may ignore arbitrary constant of integration] 
 
Therefore an exact form of the ODE is  
 
 ( ) ( )2 2 21

23 6 3 0x x

M

x y xy y e dx x y d

N

e y+ + + + =  
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Example 3.3.2  (continued) 
 
My  =  (3x2  +  6x  +  y) ex   
 
Nx  =  (6x  +  0  +  3x2  +  y) ex  =  My  
 
Therefore the ODE is, indeed, exact. 
 
If one cannot spot the potential function  u(x, y)  =  (3x2y  +  ½y2) ex , then the next fastest 
path to a solution is  
 

( ) ( )2 21
23xu N dy e x y y g= = + +∫ x  

 
[Note that an anti-differentiation of M with respect to x would involve an integration by 
parts.] 
 

( ) ( )2 21
23 6 0x

xu e x y y xy g x′⇒ = + + + +  
 

( 2 21
2But 3 6 ) xM x y y xy e= + +  

 
( ) ( ) 10g x g x c′⇒ = ⇒ =  

 
General solution:  

( )2 21
23xe x y y A+ =  

 
 
 
 



ENGI 2422 First Order ODEs – Integrating Factor Page 3-24 

 
Example 3.3.3   
 
A block is sliding down a slope of angle α, as 
shown, under the influence of its weight, the 
normal reaction force and the dynamic friction 
(which consists of two components, a surface term 
that is proportional to the normal reaction force 
and an air resistance term that is proportional to the 
speed).   The block starts sliding from rest at A.   
Find the distance  s(t)  travelled down the slope 
after any time t (until the block reaches B). 
 
AP  =  s(t)   
 
AB  =  L  
 
W  =  mg  
 
N  =  W cos α  
 
Friction  =  surface  +  air 
 
         F   =  μN  +  kv   
 

( ) dsv t
dt

=  

 
Starts at rest from A    ⇒   v(0)  =  s(0)  =  0 
 
Forces down-slope: 

sin sin cosdvm W F mg mg
dt

α α μ= − = − − kvα  

 

( ), where sin cos anddv ka bv a g b
dt m

α μ α⇒ = − = − =  

 
Separation of variables method:   
 

dv dt
a bv

=
−∫ ∫  

 

( ) 1
1 ln a bv t C
b

⇒ − − = +  



ENGI 2422 First Order ODEs – Integrating Factor Page 3-25 

Example 3.3.3  (continued) 
 
⇒ ln (a − bv)  =  − bt  +  C   
 
⇒ a − bv  =  C3 e

− bt  
 

btav A
b

−⇒ = + e  

 
But v(0)  =  0 
 

0 a A
b

⇒ = +  

 
Therefore  

( ) ( )1 btav t e
b

−= −  

 
 
 
OR   
 
Integrating factor method:   
 

 dv a b
dt

= − v  

 
⇒ (bv − a) dt  +  dv  =  0 
 
This ODE is not exact. 
 
Assume that the integrating factor is a function of  t  only:   I  =  I (t). 
 
P  =  bv  −  a    ⇒   Pv  =  b 
 
Q  =  1    ⇒   Qt  =  0  
 

( )
" " 0

1
y x v tP Q P Q b b R t

Q Q
− − −

⇒ = = = =  

 
1R dt b dt bt⇒ = =∫ ∫  

( ) btI t e⇒ =  
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Example 3.3.3  (continued) 
 
The ODE becomes the exact form  
 
 (bv − a) ebt dt  +  ebt dv  =  0 
 
M  =  (bv − a) ebt , N  =  ebt  
 
We want a function  u(t, v)  such that  

( ) andbt btu ubv a e e
t v

∂ ∂
= − =

∂ ∂
 

 
One can easily spot that such a function is  

bt bta au v e A v Ae
b b

−⎛ ⎞= − = ⇒ = +⎜ ⎟
⎝ ⎠

 

 
But v(0)  =  0 

0 a A
b

⇒ = +  

 
Therefore  

( ) ( )1 btav t e
b

−= −  

 

( )1 btds av e
dt b

−= = −  

 

2
1 btas t e

b b
−⎛ ⎞⇒ = + +⎜ ⎟

⎝ ⎠
C  

 
But s(0)  =  0 
 

2
10 0a C

b b
⎛ ⎞⇒ = + +⎜ ⎟
⎝ ⎠

 

 
Therefore 
 

( )2 1btas bt e
b

−= + −  

or 
( ) ( )/sin cos

1kt mmg ms t
k k

α μ α −− ⎛ ⎞= +⎜ ⎟
⎝ ⎠

e −  
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Example 3.3.3  (continued) 
 
The terminal speed  v∞ is 
 

( ) ( )sin cos
lim
t

mgav v t
b k

α μ α
∞ →∞

−
= = =  

 
 
The object will not begin to move unless   F  <  W sin α   
 
⇒ a  >  0   
 
⇒  tan α  >  μ  . 
 
[The slope has to be steep enough to overcome the force of static friction.] 
 

For a 10 kg block sliding down a slope of angle 30°, with 3 1and
4 2

kμ = = ,  with   

g ≈ 9.81 ms−2, the terminal speed is just over 24.51 ms−1 and the graphs of speed and 
position are 
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Example 3.3.4    
 
Find the solution of 

x  +  y  +  y'  =  0 
that passes through the origin. 
 
( ) 1 0x y dx

P

dy

Q
↑

+ + =  

 
The ODE is not separable. 
 
Py  =  1  but  Qx  =  0. 
 
Therefore the ODE is not exact. 
 
Try an integrating factor of the form  I  =  I (x). 
 

 ( )1 0 1
1

y xP Q
R x

Q
− −

= = =  

 1R dx dx x= =∫ ∫  

( ) R dx xI x e e∫⇒ = =  
 
The ODE becomes the exact form 
 
( ) 0

x y

x xx y e d e d

u

x y

u

+ +
↑

=  

 
( ) ( ) 1 2, 1 xu x y x y e c c⇒ = − + + =  

 
1 1x xy x A e y x A e− −⇒ + − = ⇒ = − +  

 
But  (0, 0)  is on the curve 
 
⇒ 0  =  1  −  0  +  A    ⇒   A  =  −1 
 
The complete solution is therefore 

y  =  1  −  x  −  e−x 
 
Check: 
x  +  y  +  y'  =  (x)  +  (1  −  x  −  e−x)  +  (0  −  1  + e−x )  =  0     
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3.4 First Order Linear ODEs  
 
The general form of a first order linear ordinary differential equation is  

( ) ( )dy P x y R x
dx

+ =  

[or, in some cases,  

( ) ( )ySxyQ
dy
dx

=+  ] 

 
Rearranging the first ODE into standard form,  
 

(P(x) y − R(x)) dx  +  1 dy  =  0 
 
Written in the standard exact form with an integrating factor in place, the first equation 
becomes 

I (x) (P(x) y − R(x)) dx  +  I (x) dy  =  0 
 
Compare this with the exact ODE 

du  =  M(x, y) dx  +  N(x, y) dy  =  0 
 

The exactness condition 
x
N

y
M

∂
∂

=
∂
∂   

( ) ( ) dII x P x
dx

⇒ ⋅ =  

 
dI P dx
I

⇒ =∫ ∫  

 
( )Let , thenh x P dx= ∫  

 
 ln I (x)  =  h(x)   
 
and the integrating factor is 
 ( ) ( ) ( ) ( )∫== dxxPxhexI xh where, . 

The ODE becomes the exact form 
 eh (Py − R) dx  +  eh dy  =  0 
 
M  =  eh (Py − R) ,    N  =  eh    and   h' = P . 
 

( )h hu M dx e h y R dx y h e dx e R dx′ ′= = − = −∫ ∫ ∫ ∫ h  

( )h hu y e e R dx f y⇒ = − +∫  
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( )0hu e f
y

∂ ′⇒ = − +
∂

y  

 
But N  =  eh    ⇒   f '(y)  =  0 
 

1 2
h hu y e e R dx c c⇒ = − + =∫  

 
h hy e e R dx⇒ = +∫ C  

 
 
 

Therefore the general solution of ( ) ( )xRyxP
dx
dy

=+  is 

( ) ( ) ( ) ( )( ) ( ) ( )∫∫ =+= − dxxPxhCdxxReexy xhxh where,  

 
A note on the arbitrary constant of integration in ( )h x P dx= ∫ : 

 
( ) ( )Let and Am P x dx A h x A B= + = +∫ e=  

then 
1m h A h m h Ae e e B e e e e e
B

− − −= = ⇒ = = h−  

 

( )m my e e R dx−⇒ = +∫ C  

 

( )1 h h h h Ce B e R dx C e e R dx
B B

− − ⎛ ⎞= + = ⎜ ⎟
⎝ ⎠∫ ∫ +  

 
 
 
 
 
 
 
 
 
 
Therefore we may set the arbitrary constant in ( )h x P dx= ∫  to any value we wish, 

including zero, without affecting the general solution of the ODE at all. 
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Example 3.4.1    
 
Solve 
 y'  +  2y  =  6ex   
 
Compare with  
 
 y'  +  P(x) y  =  R(x)   
 
The ODE is linear, with P(x) = 2  and  R(x) = 6ex . 
 

( ) 2 2h P x dx dx= =∫ ∫ x=  

 

( )
3

2 36 6
3

6
x

h x x x ee R dx e e dx e dx⇒ = = =∫ ∫ ∫  

 

( ) ( )2 32h h x xy e e R dx C e e C− −⇒ = + = +∫  

 
Therefore the general solution is  
 

y  =  2 ex  +  A e−2x 
 
Check:  
 
y'  =  2 ex  −  2A e−2x 
 

2

2
2 4 2

2 2

6 0

x x

x x

x

y y e A e

e A e

e

−

−

′⇒ + = +

− −

= +
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Example 3.4.2 :    
Find the current   I (t)  flowing through this simple 
RL circuit at any time t. 
 
The electromotive force is sinusoidal: 
 
 E(t)  =  Eosin ωt   
 
 
The voltage drop across the resistor is   RI . 
 

The voltage drop across the inductor is dIL
dt

. 

 
Therefore the ODE to be solved is  

o sindIL R I E
dt

tω+ =  

sinEdI R I
dt L L

RP

tω⎛ ⎞+ =⎜ ⎟
⎝ ⎠

   - which is linear. 

1R Rtdt
L

h P
L

dt= = =∫∫  

 
The integrating factor is therefore   eh  =  eRt/L  
 

/ sinRt Lhe R d E et
L

ω⇒ =∫ ∫ t dt  

 
A two-step integration by parts and some algebraic simplification lead to  

( )
( )o

22
/ sin cosh Rt LEe R dt e R t L t

R L
ω ω ω

ω
⎡ ⎤= −⎣ ⎦+∫  

Details: 
 

D  I   

sin ωt  eRt/L 
 +  

ω cos ωt  /Rt LL e
R

 

 −  

−ω2 sin ωt —  +  → 
INTEGRATE

2
/Rt LL e

R
⎛ ⎞
⎜ ⎟
⎝ ⎠
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Example 3.4.2 (continued)    
2 2

2o / /sin cosh Rt L Rt L hE L L Le R dt e t e t e R dt
L R R R

ω ω ω ω
⎡ ⎤⎛ ⎞ ⎛ ⎞⇒ = − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫  

 
 

2 2
2 o / /1 sinh Rt L Rt LEL L Le R dt e t e t

R L R R
cosω ω ω

⎛ ⎞ ⎡⎛ ⎞ ⎛ ⎞⇒ + = −⎜ ⎟ ω
⎤

⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣
∫

⎦
 

 
 
 

o
2

/ sin cos
1

h Rt LE L Le R dt e t t
R RLL

R

ωω ω
ω

⎡ ⎤⎛ ⎞⎛ ⎞⇒ = −⎢ ⎥⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠⎣ ⎦⎛ ⎞+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫  

 
 

( )
( )o

22
/ sin cosh Rt LEe R dt e R t L t

R L
ω ω ω

ω
⎡ ⎤⇒ = −⎣ ⎦+∫  

 
 
Introducing the phase angle  δ , such that  ωL  =  R tan δ , 
leads to 

 ( )22 cosR R Lω δ= +  
and 

 ( )22 sinL R Lω ω δ= +  
Also 
 sin ωt cos δ  −  cos ωt sin δ  ≡  sin(ωt − δ) 
Therefore 

( )
( )o

22

/ sinRt Lh E ee R t t
R L

d ω δ
ω

− ⎦+
= ⎡ ⎤

⎣∫  

 

The general solution   ( ) ( ) ( ) ( )h t h t
I t e e R t dt C

− ⎛ ⎞= +⎜ ⎟
⎝ ⎠∫  

then becomes 

( ) ( )
( )

o

22

/sin Rt LE t A eI t
R L

ω δ

ω

−−
= +

+
transientsteady - state

 

For most realistic circuits, the current reaches 99% of its steady state value in just a few 
microseconds. 
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Example 3.4.3    
 
Find the general solution of the ODE 
 

y'  −  y  =  sinh x 
 
P  =  −1  R  =  sinh x  
 
Therefore the ODE is linear. 
 
h P dx x= = −∫  
 
⇒ Integrating factor is  eh  =  e−x   
 

sinhh xe xe R dx −⇒ =∫ ∫ dx  
 

 
21

2 2

x x x
x e e ee dx

− −
− ⎛ ⎞− −

= =⎜ ⎟
⎝ ⎠

∫ ∫ dx  

 

 
2

2 4

xx e−
= +  [Note:  integration by parts fails for this integral!] 

 
 
 
Therefore  

( )
2

2 4

x
h xhy e e R dx C x ee

−
− ⎛ ⎞

+ +⎜⎜
⎝

= = ⎟C ⎟
⎠

+∫  

 

( )( )1 2
4

x xy x A e e−= + +  

 
 
 
Note:   this is equivalent to  
 

 ( ) ( )( )1 2 1 cosh 2 1 sinh
4

y x A x x A x= + + + + −  

 
[because ex  =  cosh x  +  sinh x   and   e–x  =  cosh x  –  sinh x ] 



ENGI 2422 First Order Linear ODEs Page 3-35 

Example 3.4.4    
 
Solve the ODE  
 

( )2 21 2 y ydyx e e
dx

− =  

 
The ODE is not separable. 
 
Re-writing the ODE in standard form,  
 

( )2 22 1y ye dx x e dy+ − 0=

x

 

NM
↑

 
My  =  2 e2y   
 
Nx  =  2 e2y −  0  =  My     
 
Therefore the ODE is exact.  
 

2yu M dx e d= =∫ ∫  
 
  ( )2yx e f= + y  
 

( )22 yu x e f
y

∂ ′⇒ = +
∂

y  

 
2But 2 1yN x e= −  

 
⇒ f '(y)  =  −1    ⇒   f (y)  =  −y  +  c 
 
⇒ u  =  x e2y   −  y  =  A  
 
Therefore the general solution is  
 

x e2y   −  y  =  A 
 
 
OR  
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Example 3.4.4   Alternative Method: 
 

( )2 21 2 y ydyx e e
dx

− =  

 
2 21 2 y y dxx e e

dy
⇒ − =  

 
22 ydx x e

dy
−⇒ + =  

 
Compare with  
 

        ( ) ( )dx Q y x S y
dy

+ =  

 
Therefore the ODE is linear (for  x  as a function of  y). 
 

2 2h Q dy dy y= = =∫ ∫  
 

2yhe e⇒ =  
 

2 2 1y yhe S dy e e dy dy y−⇒ = =∫ ∫ ∫ =  
 

( )h hx e e S dy C−= +∫          

 
( )2 2y yx e y C x e y−⇒ = + ⇒ − = C  
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Review for the solution of first order first degree ODEs: 
 

P dx  +  Q dy  =  0 
 
1. Is the ODE separable?   If so, use separation of variables.   If not, then 
 
2. Can the ODE be re-written in the form   y'  +  P(x) y  =  R(x) ? 
 If so, it is linear. 

( )and h hh P dx y e e R dx C−= =∫ ∫ +  

Else 
 

3. Is   Py  =  Qx ?   If so, then the ODE is exact. 

Seek  u  such that andu uP Q
x y

∂ ∂
= =

∂ ∂
. 

The solution is   u  =  c. 
Else 

 

4. Is yP Q
Q
− x  a function of  x  only? 

If so, the integrating factor is ( ) ( ) ( ), where .y xR x dx P Q
I x e R x

Q
−∫= =  

Then solve the exact ODE    I P dx  +  I Q dy  =  0 . 
Else,  
 

5. Is x yQ P
P
−

 a function of  y  only? 

If so, the integrating factor is ( ) ( ) ( ), where .x yR y dy Q P
I y e R y

P
−∫= =  

Then solve the exact ODE    I P dx  +  I Q dy  =  0 . 
 
 
A first order ODE that does not fall into one of the five classes above is beyond the scope 
of this course. 
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3.5 Reduction of Order  
 
Occasionally a second order ordinary differential equation can be reduced to a pair of 
first order ordinary differential equations. 
If the ODE is of the form  

f (y", y', x)  =  0 
(that is, no  y  term), then the ODE becomes the pair of linked first order ODEs 

f (p', p, x)  =  0 ,    p  =  y' 
If the ODE is of the form  

g (y", y', y)  =  0 
(that is, no  x  term), then the ODE becomes the pair of linked first order ODEs 

dx
dypyp

dy
dppg ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅ ,0,,  

where the chain rule ⇒ 
dy
dpp

dx
dy

dy
dp

dx
dp

dx
dy

dx
d

dx
yd

⋅=⋅==⎟
⎠
⎞

⎜
⎝
⎛=2

2

 

 
Example 3.5.1    
 
Find the general solution of the second order ordinary differential equation 
 

x y"  +  2y'  =  4x3 
 
Let   p = y'  then  
 
 x p'  +  2p  =  4x3   
 

( ) ( )P

22 4dp p x
dx

x x
x

⇒ + =

R

 

which is linear. 
 

( )22 2 ln lnh P dx dx x x
x

⇒ = = = =∫ ∫  

 
2he x⇒ =  

 

( )2 2 4 44 4
5

he R dx x x dx x dx x= =∫ ∫ ∫ 5=  
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Example 3.5.1   (continued) 
 

( )h hp e e R dx C−= +∫  

5 3
2

1 4 4
5 5

2y x C x Cx
x

−⎛ ⎞′ = + = +⎜ ⎟
⎝ ⎠

 

 
41

5
Ay x B
x

⇒ = + +  

 
 
 
 
 
 
Note that the number of arbitrary constants of integration in the general solution matches 
the order of the ordinary differential equation. 
 
 
Example 3.5.2  

2

2

2

Solve ⎟
⎠
⎞

⎜
⎝
⎛=

dx
dy

dx
yd . 

This second order ODE can be solved by either of the two methods of reduction of order. 

dx
dyp =Let  

 
Method 1:    The ODE becomes   
 

2 2 1dp p p dp dx x A
dx p

−= ⇒ = ⇒ − = +∫ ∫  

(provided   p ≠ 0) 
 
Case p ≠ 0: 

( )1 lndy p y B x A
dx x A

= = − ⇒ = − +
+

 

 
The case  p = 0  ( ⇒  y = A ) needs to be considered separately.  
 
It is a [trivial] solution of the ODE but it is not included in the general solution. 
Therefore we need to add the singular solution  y = A  to our general solution.  
General solution: 
 

y  =  B  −  ln(x + A)    or    y  =  A . 
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Example 3.5.2   (continued) 
 
Method 2:    The ODE becomes 
 

2 or 0dp dpp p dy p
dy p
⋅ = ⇒ = =∫ ∫  

 
The case  p = 0  leads to a singular solution (y = A) as above.    
Following the other branch: 
 

ln yy cdyp y c p e k e
dx

+= + ⇒ = = =    

which is separable. 

( ) 1
2

1y y ye dy k dx e kx c e x A
k

−− − ⎛ ⎞= ⇒ − = + ⇒ = − ⋅ +⎜ ⎟
⎝ ⎠∫ ∫  

 
This leads to the same general solution as before: 
 

( )ln ory B x A y= − + = A  
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Example 3.5.3    
 
Solve 

y"  =  2 y y' 
 

Let dpp y y p
dy

′ ′′= ⇒ =  

 

2dpp y p
dy

⇒ =  

 

2 ordp y p
dy

⇒ = ≡ 0  

 
p  =  0    ⇒   y = A ,  which does satisfy the ODE   y"  =  2 y y' 
 . 
 
The other branch is separable. 
 

22 dydp y dy p y A
dx

= ⇒ = +∫ ∫ =  

 
This is also separable. 
 

2

dydx
y A

=
+∫ ∫  

 
 
 
 
 
 
 
 
 
 
 
We need to quote some standard integrals: 
 

2 2

1 arctan ,dx x C
x a a a

⎛ ⎞= +⎜ ⎟+ ⎝ ⎠∫     2 2

1 arctanhdx x C
x a a a

⎛ ⎞= +⎜ ⎟− ⎝ ⎠∫  

and 2

1dx C
x x

= −∫  
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Example 3.5.3   (continued) 
 
If   A  >  0    then  

( )( )1 arctan tany yx B A
A A A

⎛ ⎞+ = ⇒ = +⎜ ⎟
⎝ ⎠

x B  

 
If   A  =  0    then  

1x B
y

+ = −  

 
If   A  <  0    then  | A |  =  −A  and  

( )( )1 arctanh tanhy yx B A
A A A

⎛ ⎞+ = ⇒ = − +⎜ ⎟− − −⎝ ⎠
x B  

 
 
The solution   y = A  does not fit into any of these categories. 
 
Putting all four cases together, the general solution of   y"  =  2 y y'   is: 
 
 
 

( )

( )

( )( ) ( )

( )

( )( ) ( )

or

tan 0

1 0

tanh 0

y x c

A A x B A

y x A
x B

A A x B A

=

⎧ + >
⎪
⎪⎪= −⎨ +⎪
⎪ + <⎪⎩

=
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3.6 Applications   
 
Orthogonal trajectories  
 
A family of curves in ú2 can be 
represented by the ODE  

( )yxf
dx
dy ,=  

 
Any curve, whose intersection 
with any member of that family 
occurs at right angles, must 
satisfy the ODE 

( )
1
,

dy
dx f x y

−
= . 

 
Another family of curves, all of which intersect each member of the first family only at 
right angles, must also satisfy the ODE  

( )
1
,

dy
dx f x y

−
= . 

 
Example 3.6.1    
 
Find the orthogonal trajectories to the family of curves  
 

xy  =  c 
xy  =  c    ⇒   1y  +  xy'  =  0 
 

yy
x

′⇒ = −  

 
The orthogonal trajectories must satisfy 
the ODE 

xy
y

′ = +  

 
dyy x y dy x dx
dx

⇒ = ⇒ =∫ ∫
 

2 2

2 2
y x C⇒ = + ⇒

x2  −  y2  =  A

 

 
 

         [blue:  xy = c ;   red = x2  −  y2  =  A ] 
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Example 3.6.2    
 
Find the orthogonal trajectories to the equipotentials of the electric field,  

( ), ,
4

QV x y c
rπε

= =  

where 2 2r x y= + . 
 

2 2 2 2 2 2 , where
4

Qr x y x y a a
cπε

= + ⇒ + = =  

 
2⇒ 2x + 0y y′ =  

 
xy
y

′⇒ = −  

 
Orthogonal trajectories satisfy  
 

y dy dxy
x y x

′ = + ⇒ =∫ ∫  

 
⇒ ln y  =  ln x  +  C   =   ln x  +  ln A   
 
⇒ y  =  Ax  –  a family of radial lines. 
 
 
 
 
 
 
 
 
 
 
Lines of force and equipotential curves are examples of orthogonal trajectories.   Taking 
the inverse case to Example 3.6.2, for a central force law, the lines of force are radial 

lines  y = k x.   All of these lines satisfy the ODE  
x
y

dx
dy

= .   The equipotential curves 

must then be solutions of the ODE 

cxydxxdyy
y
x

dx
dy

+−=⇒−=⇒−= ∫∫ 22

22

 

The general solution can be re-written as   x2 + y2 = r2 , which is clearly the equations of 
a family of concentric circles. 
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Other Applications  
 
Newton’s Law of Cooling  
 
If  t = time,  Θ(t) = temperature  and  Θf  = ambient [surrounding] temperature, then the 
rate at which the temperature of an object decreases, when it is immersed in some other 
substance whose steady temperature is Θf , is proportional to the temperature difference: 
 

( )( )f
d k t
dt
Θ

− = Θ − Θ  

 
Example 3.6.3    
 
An object is removed from boiling water (at 100°C) and is left in air at room temperature 
(20°C).   After ten minutes, its temperature has fallen to 60°C.   Find its temperature Θ(t). 
 

( )( 20d k t
dt
Θ

= Θ − )  which is separable. 

[Note that the negative sign has been absorbed into the unknown constant  k.] 
 

20
d k dtΘ

=
Θ −∫ ∫  

 
( )ln 20 kt C⇒ Θ− = +  

 
20 kt C kt C kte e e A+⇒ Θ− = = = e  

20 ktA e⇒ Θ = +  
 
But Θ(0)  =  100 
 
⇒ 100  =  20  +  A    ⇒   A = 80  
 
and  Θ(10)  =  60 
 
⇒ 60  =  20  +  80 e10k   

10 60 20 1
80 2

ke −
⇒ = =  

 
/10110 ln ln 2 ln 2 ln 2

2 10
ttk kt −⇒ = = − ⇒ = − =  

/102kt te −⇒ =  
Therefore    Θ(t)  =  20  +  80×2−t/10  =  20(1 +  2(2  −  t/10))  
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Example 3.6.4    
 
A right circular cylindrical tank is oriented with its axis of symmetry vertical.   Its 
circular cross-sections have an area  A  (m2).   Water enters the tank at the rate  Q (m3s−1).   
Water leaves through a hole, of area  a , in the base of the tank.   The initial height of the 
water is  ho.    Find the height  h(t)   and the steady-state height  h∞.  
 
Torricelli:   2v g= h  
 
Change of volume: 
Change = IN OUT

= 2dV Q a
dt

−

− gh

 

 
 
But   V  =  A h 
 

( ), where 2dhA Q b h b a
dt

⇒ = − = g  

 
This ODE is separable. 
 

A dh dt
Q b h

=
−∫ ∫  

 
Let u  =  h1/2    ⇒   du  =  (1/2) h−1/2 dh    ⇒   dh  =  2 u du   
 

2 2A udh A du A du
Q bu b Q buQ b h

bu−
= = ⋅

− − −−∫ ∫ ∫  

 
2 2 1A Q bu Q A Qdu du

b Q bu b Q bu
⎛ ⎞− −

= = − −⎜ ⎟− − −⎝ ⎠
∫ ∫  

 

[ ] ( )
( )

o
0

2 ln
h h t

h h

t A Qu Q bu
b b

τ
=

=

⎡ ⎤∴ = − − −⎢ ⎥−⎣ ⎦
 

 

( ) ( ) ( )( )o o
20 ln lnA Qt h h Q b h Q b
b b
⎛⇒ − = − − + − − −⎜
⎝

h ⎞
⎟
⎠

 

Therefore 
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Example 3.6.4   (continued) 
 

( )o
o

ln 0 , 2
2
bt Q Q b hh h b a g
A b Q b h

⎛ ⎞−
+ − + = =⎜ ⎟⎜ ⎟−⎝ ⎠

 

 
t  can be found as an explicit function of  h, but not vice-versa. 
 

requires 0t Q b→∞ − →h  
 

2 2

22
Q Qh h
b b∞ ∞

⎛ ⎞⇒ = ⇒ = =⎜ ⎟
⎝ ⎠

Q
ga

 

 

Alternative method: In the steady state, flows in and out balance, so that 0dV
dt

= . 

Setting 0dV
dt

=  in the ODE: 

2

20 2
22

Q QQ a gh h h
gaa g ∞= − ⇒ = ⇒ =  

 
 
 
 
 
 
 
 
 
 
 
 
Two additional resources are available on the web site: 
More Examples of ODEs  (at www.engr.mun.ca/~ggeorge/2422/notes/c3tutorl.html) 
and   
Examples of Partial Fractions  (at www.engr.mun.ca/~ggeorge/2422/notes/partialFrac.html) 
 
Also see other examples in problem sets and in past tests and examinations. 
 
 
 

END OF CHAPTER 3 
 
 

http://www.engr.mun.ca/~ggeorge/2422/notes/c3tutorl.html
http://www.engr.mun.ca/~ggeorge/2422/notes/partialFrac.html
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