1. A sample of 43 measurements of breaking load is summarized in this boxplot.


The location of the sample mean is indicated by the symbol $\oplus$.
(a) Determine whether the outlier is mild or extreme. Show your working.
(b) Excluding the outlier, state any two other reasons to deduce positive skew.
(c) Using the summary statistics

$$
n=43, \quad \sum x=1462, \quad \sum x^{2}=107212
$$

find the value of the sample standard deviation $s$ for these data.
2. The load $W$ (in g) needed to break a new type of cotton thread is known to be a random quantity that follows a Normal distribution. It is believed that the population mean breaking load is 20 g and the strength of that belief is represented by the standard deviation $\sigma_{0}=1 \mathrm{~g}$. A random sample of 25 such threads has a mean breaking load of 18.72 g with a sample standard deviation of 2.50 g .
(a) Construct a Bayesian $95 \%$ confidence interval estimate for the true mean breaking load $\mu$.
(b) Construct a classical 95\% confidence interval estimate for the true mean breaking load $\mu$.
(c) Is there sufficient evidence to conclude that the true mean breaking load $\mu$ is not 20 kg ?
(d) Provide a brief reason for the different widths of your two confidence intervals.
3. A continuous random quantity $X$ has a probability density function defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{\pi}{4} \cos \left(\frac{\pi x}{2}\right) & (-1 \leq x \leq+1)  \tag{5}\\
0 & \text { (otherwise) }
\end{array}\right.
$$

(a) Find the exact value of $\mathrm{P}\left[|X|<\frac{1}{2}\right]$.
(b) Find the exact value of the population variance $\sigma^{2}$.
4. In a network, components B and C are connected in parallel and that subsystem is connected in series with component A as shown.


The subsystem works if at least one of the components B or C functions properly. The complete system works only if component A and the subsystem both function properly.
Let $A=$ the event that component A functions properly;
$B=$ the event that component B functions properly; and
$C=$ the event that component C functions properly.
It is known that $\mathrm{P}[A]=.80$, independently of the other two components, and that $\mathrm{P}[B]=.50$, independently of component A . However, the event $C$ is dependent on the event $B$. A failure in component $B$ increases the load on component $C$ and therefore reduces the probability that component C will work.
It is known that $\mathrm{P}[C \mid B]=.90$ and $\mathrm{P}[C \mid \widetilde{B}]=.50$.
(a) Find $\mathrm{P}[B \cup C]$.
(b) Find the probability that the complete system works.
(c) Find $\mathrm{P}[C]$.
5. The performances of eight machines of varying capacities in a standard test are measured before ( $x$ ) and after ( $y$ ) the application of a proposed new cleaning device. It is known that both populations are normally distributed with a common variance. The manager will invest in the new cleaning device only if there is evidence, at a level of significance of $5 \%$, that the device has improved the average performance score by more than 1.0.
(a) Which of the two sample $t$-tests (paired or unpaired) should be conducted? State the reason for your selection.
(b) Write down the appropriate null and alternative hypotheses.
(c) Use the appropriate set of Minitab output below, to conduct the appropriate hypothesis test, at a level of significance of 5\%.
(d) What should the manager's decision be?

Two-Sample T-Test and CI: After, Before

```
\begin{tabular}{lrrrr} 
& N & Mean & StDev & SE Mean \\
After & 8 & 154.0 & 49.9 & 18 \\
Before & 8 & 150.0 & 49.0 & 17
\end{tabular}
Difference = mu (After) - mu (Before)
Estimate for difference: 4.0
95% lower bound for difference: -39.5
T-Test of difference = 1 (vs >): T-Value = 0.121 P-Value = 0.453 DF = 14
Both use Pooled StDev = 49.4397
```


## Paired T-Test and CI: After, Before

|  | N | Mean | StDev | SE Mean |
| :--- | ---: | ---: | ---: | ---: |
| After | 8 | 154.0 | 49.9 | 17.6 |
| Before | 8 | 150.0 | 49.0 | 17.3 |
| Difference | 8 | 4.00 | 4.47 | 1.58 |

95\% lower bound for mean difference: 1.004
T-Test of mean difference $=1$ (vs > 1): T-Value $=1.897 \quad \mathrm{P}$-Value $=0.0498$
6. The time $(y)$ to failure of a device is measured for each of 25 values of a load ( $x$ ). A plot of the observed values of ( $x, y$ ) and a normal probability plot of the residuals from simple linear regression are shown here.


(a) State two reasons why the simple linear regression model for $Y$ as a function of $x$ is appropriate.

Use the following summary statistics to answer the remaining parts of this question.

$$
\begin{aligned}
n & =25 & \sum x & =8000 & \sum y & =719.81 \\
\sum x^{2} & =2690000 & \sum x y & =216777.00 & & \sum y^{2}
\end{aligned}=22391.88
$$

(b) Find the equation of the regression line $\left(\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x\right)$.
(c) Construct the ANOVA table for this simple linear regression model.
(d) To the nearest $1 \%$, how much of the total variation in $Y$ is explained by the simple linear regression model?
(e) Conduct an appropriate hypothesis test to determine whether or not there is a significant linear association between $Y$ and $x$.
(f) Construct a 95\% prediction interval for a future value of $Y$ when $x=320$.
7. A partially completed decision tree is shown here.
$G=$ the item is good
$\mathrm{D}=$ the item is defective
$D=\widetilde{G}$
The payoffs for items are as shown at the right edge of the diagram (in units of dollars). Insurance protects against the loss due to a defective item.

The test costs \$30.
Insurance, costing $\$ 100$, is purchased if the item fails the test and is not purchased if the item passes the test.

It is known that $90 \%$ of all items are good.

If an item is good then it will pass the test $80 \%$ of the time.

If an item is defective, then it will pass the test $20 \%$ of the time.

(a) Verify that the probability labelled $(\boldsymbol{p})$ is exactly $\frac{36}{37}$.
(b) Verify that the probability labelled $(\boldsymbol{q})$ is exactly $\frac{9}{13}$.
(c) Find the probability labelled (r).
(d) Verify that the expected value labelled (a) is exactly $\frac{4890}{37}$.
(e) Find the other expected values labelled (b), (c), (d), (e), (f), (g), (h), (i) and hence
determine the optimum strategy that maximizes the expected payoff.
(f) By how much can the test cost be increased before the optimum strategy changes?

## BONUS QUESTION

8. A two-sample hypothesis test is designed to determine whether or not the true
mean efficiency rating $\mu_{\text {new }}$ of a prototype machine is higher than the true mean efficiency rating $\mu_{\text {old }}$ of an existing machine. Random samples of equal size $n$ are taken from each type of machine and their efficiencies are recorded. It is known that the efficiencies are normally distributed with the same known population standard deviation $\sigma=10$ in both cases.

Find the minimum sample size $n_{\min }$ needed to ensure that the probabilities $\alpha$ (of type I error) and $\beta(5)$ (type II error when $\mu_{\text {new }}-\mu_{\text {old }}=5$ ) are both $5 \%$.
[If you quote a formula for $n_{\min }$, then derive that formula.]
[Also provided with this examination paper were tables of the standard normal c.d.f. (the $\underline{z}$ tables) and of the critical values of the $t$ distribution (the $t$ tables).]

[^0]On to the solutions of this examination


[^0]:    ( Back to the index of questions

