
Weight w (N)	Frequency <i>f</i>	wf	$w^2 f$	
$0 \le w < 50$	53	1325	33125	
$50 \le w < 100$	62	4650	348750	
$100 \le w < 150$	28	3500	437500	
$150 \le w < 200$	24	4200	735000	
$200 \le w < 300$	21	5250	1312500	
$300 \le w < 400$	7	2450	857500	
$400 \le w < 600$	5	2500	1250000	
Total	200	23875	4974375	

1) Observations of the weights w (in Newtons) of two hundred (200) test cables after two weeks of immersion in a corrosive fluid are summarized in this frequency table:

(a) Identify the median class.

(b) Estimate the sample mean weight \overline{w} from this frequency table. Show your working. [2]

- (c) Estimate the sample standard deviation s_w from this frequency table. Show your working.[4]
- (d) Do these data provide evidence for positive skew, negative skew or no skew?
- (e) Explain briefly why the graph below of the data is *not* a histogram.

[2]

[2]

[2]

[4]

[3]

2)	Events A, B, C form a partition. A bookmaker offers the following odds: $r_A = 3:1$ on, $r_B = 7:5$ against and $r_C = 2:1$ against
(a)	Show that the corresponding probabilities are not coherent.
(b)	If a deposit of \$10 is placed on each of the three outcomes with the quoted odds, then
	what is the bookmaker's profit (or loss) if event B occurs?
(a)	Descels the three probabilities so that they are acharant

- [3] (c) Rescale the three probabilities so that they are coherent. [3]
- (d) Convert the coherent probabilities back into odds.
- 3) A quality control system rejects an item that is defective 98% of the time. It rejects a good item 6% of the time. It is known that 5% of all items are defective.
 - (a) Given that an item has been rejected, find the probability that it is defective. [8] Express your answer as a fraction reduced to its lowest terms *and* as a decimal correct to two significant figures.

BONUS QUESTION

- (b) Given that the quality control system has tested the item twice in independent tests and has rejected it both times, find the probability that the item is defective. [+3] Express your answer as a decimal correct to two significant figures.
- 4) It is known that [7] P[A] = .60, P[B] = .55, P[C] = .50,P[AB] = .40, P[BC] = .30, P[CA] = .25 and P[ABC] = .20. Find the probability that *none* of events A, B, C occur.

Return to the Index of Questions

To the solutions 🖙