1) Observations of the times d (in days) for the completion of the same task by a sample of 54 contractors are summarized by the following Minitab ${ }^{\circledR}$ output:

Descriptive Statistics: Completion Time (d)

| Variable | | N | Mean | StDev | Minimum | Q1 | Median | Q3 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Maximum

Boxplot of Completion Time (d)

(a) State any two reasons to conclude that this sample is negatively skewed.
(b) Is the outlier mild or extreme? Show your working.
(c) Estimate, to the nearest day, the second shortest completion time.
(d) Comment briefly on the outlier - is it a plausibly genuine observation? Why or why not? [3]
2) Events A, B, C form a partition. A bookmaker offers the following odds: $r_{A}=5: 3$ on, $r_{B}=1: 1$ ("even odds") and $r_{C}=7: 1$ against
(a) Show that the corresponding probabilities are not coherent.
(b) If ten deposits of $\$ 10$ are placed with the quoted odds as follows:
five deposits on event A, four on event B and one on event C; then what is the bookmaker's profit (or loss) if event C occurs?
(c) Rescale the three probabilities so that they are coherent.
(d) Convert the coherent probabilities back into odds.
3) It is known that
$\mathrm{P}[A]=.40, \quad \mathrm{P}[B]=.35, \quad \mathrm{P}[C]=.50$, $\mathrm{P}[A \cup B]=.60, \quad \mathrm{P}[B \cup C]=.75, \quad \mathrm{P}[C \cup A]=.70 \quad$ and $\quad \mathrm{P}[A \cup B \cup C]=.85$.
Find the probability that all of events A, B, C occur.
4) A truck is carrying fifteen coils of cables, three of which are defective.

As a random sample, four coils are removed from the truck.
(a) Find the probability that none of the four coils is defective.

Express your answer as a fraction reduced to its lowest terms and as a decimal correct to two significant figures.
(b) Write down the probability mass function $p(x)$ for X, the number of defective coils in the random sample.
BONUS QUESTION
(c) Using $\mathrm{E}[X]=\sum_{x=x_{\min }}^{x_{\max }} x \cdot p(x)$, find an exact expression for $\mathrm{E}[X]$.
() Back to the index of questions

