1) A continuous random quantity X is known to be normally distributed with a population mean $\mu=20.4$ and a population variance $\sigma^{2}=25.1$.
(a) Evaluate $\mathrm{P}[X \leq 15.0]$.
(b) A random sample of size 4 is taken from this population. \bar{X} is the sample mean.

Evaluate $\mathrm{P}[\bar{X} \leq 15.0]$.
Note: You do not need to use linear interpolation in this question. Quote your answers correct to only two significant figures.
[Also provided with this question paper were tables of the standard normal c.d.f. (the \underline{z} tables)]
2) The joint probability mass function $p(x, y)$ for random quantities X, Y is defined by the table:

	Y				
	$p(x, y)$	-1	0	1	
	-1	. 20	. 15	. 15	
X	0	. 15	. 14	. 11	
	1	. 05	. 01	. 04	

(a) Find the covariance $\operatorname{Cov}(X, Y)$.
(b) Are the random quantities X, Y independent? Why or why not?
3) A box contains twelve (12) gear wheels, of which three (3) are protected with a rust-proofing treatment and the other nine (9) are not protected. A random sample of two (2) gear wheels is drawn, both at once, from the box. Let the random quantity X represent the number of gear wheels in the random sample that are protected.
(a) Show why the probability mass function (p.m.f.) for X is not binomial.
(b) Find $\mathrm{P}[X=3]$.
(c) Find the exact probability mass function $p(x)$ for X.
(d) If the sample were drawn with replacement, then would the p.m.f. for X be binomial? Why or why not?
4) A function $f(x)$ of a continuous variable x is defined by

$$
f(x)=\left\{\begin{array}{cc}
105\left(x^{4}-2 x^{5}+x^{6}\right) & (0<x<1) \\
0 & (\text { otherwise })
\end{array}\right.
$$

(a) Show that $f(x)$ is a well-defined probability density function (p.d.f.).
(b) Find the cumulative distribution function (c.d.f.) $F(x)$ for this p.d.f.
(c) Hence evaluate $\mathrm{P}\left[X>\frac{1}{2}\right]$ exactly. Leave your answer as a fraction.
(d) Find the population mean μ as a fraction reduced to its lowest terms.
(Return to the Index of Questions
On to the Solutions

