- 1) A continuous random quantity X is known to be normally distributed with a population mean $\mu = 20.4$ and a population variance $\sigma^2 = 25.1$.
 - (a) Evaluate $P[X \le 15.0]$. [3]
 - (b) A random sample of size 4 is taken from this population. \overline{X} is the sample mean. Evaluate $P[\overline{X} \le 15.0]$. [5]
- *Note*: You do *not* need to use linear interpolation in this question. Quote your answers correct to only two significant figures.

[Also provided with this question paper were tables of the standard normal c.d.f. (the z tables)]

2) The joint probability mass function p(x, y) for random quantities X, Y is defined by the table:

		Y				
	p(x, y)	-1	0	1		
	-1	.20	.15	.15		
X	0	.15	.14	.11		
	1	.05	.01	.04		

(a)	Find the covariance $Cov(X, Y)$.	[8]
(b)	Are the random quantities X, Y independent? Why or why not?	[4]

3) A box contains twelve (12) gear wheels, of which three (3) are protected with a rust-proofing treatment and the other nine (9) are not protected. A random sample of two (2) gear wheels is drawn, both at once, from the box. Let the random quantity *X* represent the number of gear wheels in the random sample that are protected.

(a)	Show why the probability mass function (p.m.f.) for X is <i>not</i> binomial.	[2]
(b)	Find $P[X=3]$.	[2]
(c)	Find the exact probability mass function $p(x)$ for X.	[10]
(d)	If the sample were drawn with replacement, then would the p.m.f. for X	[2]
	be binomial? Why or why not?	

4)	A function $f(x)$ of a continuous variable x is defined by $f(x) = \begin{cases} 105(x^4 - 2x^5 + x^6) & (0 < x < 1) \\ 0 & (\text{otherwise}) \end{cases}$	
	$\begin{bmatrix} 0 & \text{(otherwise)} \end{bmatrix}$	
(a)	Show that $f(x)$ is a well-defined probability density function (p.d.f.).	[2]
(b)	Find the cumulative distribution function (c.d.f.) $F(x)$ for this p.d.f.	[8]
(c)	Hence evaluate $P\left[X > \frac{1}{2}\right]$ exactly. Leave your answer as a fraction.	[4]
	<i>US QUESTION</i> : Find the population mean μ as a fraction reduced to its lowest terms.	[+3]

Return to the Index of Questions

On to the Solutions