1) The joint probability mass function $p(x, y)$ for random quantities X, Y is defined by the table:

	Y				
	$p(x, y)$	-1	0	1	
	-1	. 06	. 09	. 15	
X	0	. 10	. 15	. 25	
	1	. 04	. 06	. 10	

(a) Verify that $p(x, y)$ is a valid probability mass function.
(b) Find the correlation coefficient $\rho_{X, Y}$.
(c) Are the random quantities X, Y independent? Why or why not?
2) Lamps from a certain factory are known to have lifetimes T that are independent random quantities following an exponential distribution with a mean lifetime of 10,000 hours.
(a) Show that the probability p that a randomly chosen lamp has a lifetime exceeding 23,026 hours is 0.10000 , correct to five decimal places.
(b) A random sample of ten such lamps is tested. Let X be the number of lamps in this sample that have lifetimes exceeding 23,026 hours. Does X follow a binomial distribution exactly, approximately or not at all? Justify your answer.
(c) Assume that $p=0.1$ exactly. Write down the value of $\mathrm{E}[X]$.
(d) Find $\mathrm{P}[X<2]$.
(e) Another random sample of 100 lamps is tested. Estimate the probability that the sample mean lifetime \bar{T} will be less than 9,000 hours.
3) Two percent of all items from a production line are known to be defective.

A quality control process rejects a defective item 99% of the time and it rejects a good (non-defective) item 5\% of the time.

Given that the quality control process has just rejected an item, find the odds that the item is, indeed, defective.
4) A cumulative distribution function $F(x)$ of a continuous variable x is defined by

$$
F(x)=\left\{\begin{array}{cc}
0 & (x<0) \\
21 x^{5}-35 x^{6}+15 x^{7} & (0 \leq x \leq 1) \\
1 & (x>1)
\end{array}\right.
$$

(a) Evaluate $\mathrm{P}\left[X>\frac{1}{2}\right]$ exactly. Leave your answer as a fraction.
(b) Find the probability density function (p.d.f.) for this c.d.f. in its simplest form;
[that is, factor $f(x)$ as much as possible.]
BONUS QUESTION:
(c) Find the population mean μ as a fraction reduced to its lowest terms.
(3) Back to the index of questions

On to the solutions

