ENGI 3423

1) Observations of the weights w (in Newtons) of two hundred (200) test cables after two weeks of immersion in a corrosive fluid are summarized in this frequency table:

Weight w (N)	Frequency <i>f</i>	wf	w^2f	Cumulative frequency
$0 \le w < 50$	53	1325	33125	53
$50 \le w < 100$	62	4650	348750	115
$100 \le w < 150$	28	3500	437500	
$150 \le w < 200$	24	4200	735000	
$200 \le w < 300$	21	5250	1312500	
$300 \le w < 400$	7	2450	857500	
$400 \le w < 600$	5	2500	1250000	
Total	200	23875	4974375	

(a) Identify the median class.

[2]

(b) Estimate the sample mean weight \overline{w} from this frequency table. Show your working. [2]

(c) Estimate the sample standard deviation s_w from this frequency table. Show your working.[4]

[Parts (d) and (e) are on the next page.]

(a) The median of 200 ordered data is $\tilde{x} = \frac{x_{100} + x_{101}}{2}$.

The 100th and 101st values are both in the second class. Therefore the median class is

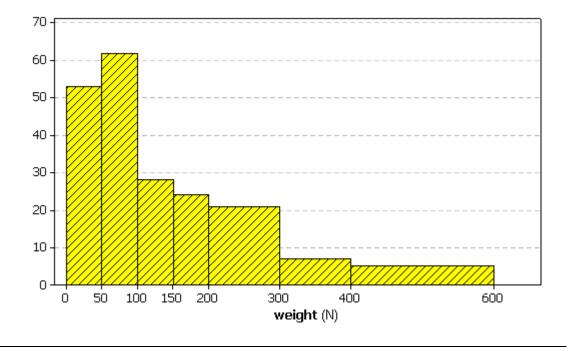
$$50 \le w < 100$$

(b)
$$\overline{w} = \frac{\sum w \cdot f}{\sum f} = \frac{23875}{200} \implies \overline{w} = 119.375 \,\text{N} = 119 \,\text{N} \,(3 \,\text{s.f.})$$

(c)
$$s_w^2 = \frac{n \sum w^2 \cdot f - (\sum w \cdot f)^2}{\sum f (\sum f - 1)} = \frac{200 \times 4974375 - 23875^2}{200 \times 199} = \frac{424859375}{39800} = 10674.858...$$

$$\Rightarrow s_w = \sqrt{10674.858...} = 103.319... \qquad \therefore \qquad s_w = 103 \text{ N} (3 \text{ s.f.})$$

1 (d) Do these data provide evidence for positive skew, negative skew or no skew?[2](e) Explain briefly why the graph below of the data is *not* a histogram.[2]



- (d) **<u>Positive skew</u>** there are many values far above the median and none far below.
- (e) Relative frequency of a class = area of the bar for that class in the histogram, so that the height of each bar = relative frequency / class width But this diagram indicates height of each bar = frequency: it is a bar chart, not a histogram.

[3]

- Events A, B, C form a partition. A bookmaker offers the following odds: 2) $r_A = 3:1$ on, $r_B = 7:5$ against and $r_C = 2:1$ against
 - (a) Show that the corresponding probabilities are not coherent. [4]
 - (b) If a deposit of \$10 is placed on each of the three outcomes with the quoted odds, then what is the bookmaker's profit (or loss) if event B occurs? [3] [3]
 - (c) Rescale the three probabilities so that they are coherent.
 - (d) Convert the coherent probabilities back into odds.

(a)
$$r = \frac{p}{1-p} \implies p = \frac{r}{1+r}$$

 $p_A = \frac{3}{1+3} = \frac{3}{4}, \quad p_B = \frac{\frac{5}{7}}{1+\frac{5}{7}} = \frac{5}{7+5} = \frac{5}{12}, \quad p_C = \frac{\frac{1}{2}}{1+\frac{1}{2}} = \frac{1}{2+1} = \frac{1}{3}$
 $\implies p_A + p_B + p_C = \frac{3}{4} + \frac{5}{12} + \frac{1}{3} = \frac{9+5+4}{12} = \frac{18}{12} = \frac{3}{2} \neq 1$

Therefore the three probabilities are not coherent.

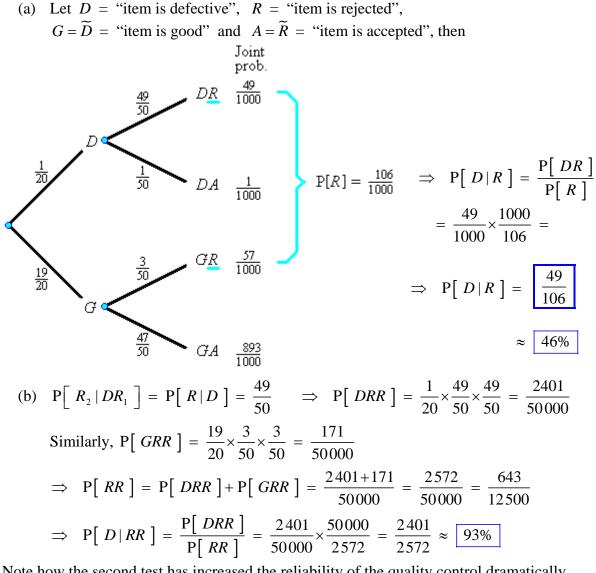
(b)
$$p_i = \frac{\text{deposit}}{\text{stake}} = \frac{b_i}{s_i} \implies s_i = \frac{b_i}{p_i} = \frac{10}{p_i} \implies s_B = \frac{10}{p_B} = 10 \times \frac{12}{5} = 24$$

Profit $= \sum b_i - s_B = 3 \times 10 - 24 =$

(c) The sum of the probabilities is
$$\frac{3}{2}$$
. Therefore rescale by $\frac{2}{3}$:
 $p_A = \frac{2}{3} \times \frac{3}{4} = \boxed{\frac{1}{2}}, \qquad p_B = \frac{2}{3} \times \frac{5}{12} = \boxed{\frac{5}{18}}, \qquad p_C = \frac{2}{3} \times \frac{1}{3} = \boxed{\frac{2}{9}}$

(d)
$$r_A = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1:1$$
 (even odds), $r_B = \frac{\frac{5}{18}}{1 - \frac{5}{18}} = \frac{5}{18 - 5} = \frac{5}{13} = 13:5$ against,
 $r_C = \frac{\frac{2}{9}}{1 - \frac{2}{9}} = \frac{2}{9 - 2} = \frac{2}{7} = \boxed{7:2 \text{ against}}$

ENGI	I 3423Term Test 1 - Solutions	Page 4 of 5
3)	A quality control system rejects an item that is defective 98% of It rejects a good item 6% of the time. It is known that 5% of al	
(a)	Given that an item has been rejected, find the probability that it Express your answer as a fraction reduced to its lowest terms <i>an</i> correct to two significant figures.	
BONL	JS QUESTION	
		is defective. [+3]



Note how the second test has increased the reliability of the quality control dramatically.

4) It is known that P[A] = .60, P[B] = .55, P[C] = .50, P[AB] = .40, P[BC] = .30, P[CA] = .25 and P[ABC] = .20.Find the probability that *none* of events *A*, *B*, *C* occur.

Let E = "none of events A, B, C occur" = $\widetilde{A} \cap \widetilde{B} \cap \widetilde{C}$

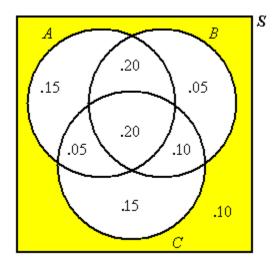
The general addition law of probability for three events is $P[A \cup B \cup C] = P[A] + P[B] + P[C] - P[AB] - P[BC] - P[CA] + P[ABC]$

$$\Rightarrow P[A \cup B \cup C] = .60 + .55 + .50 - .40 - .30 - .25 + .20 = 1.85 - 0.95 = .90$$

By the total probability law and one of deMorgan's laws, $P[E] = P[\widetilde{A} \cap \widetilde{B} \cap \widetilde{C}] = 1 - P[\sim (\widetilde{A} \cap \widetilde{B} \cap \widetilde{C})] = 1 - P[A \cup B \cup C] = 1 - .90$ Therefore

$$P[E] = .10$$

The Venn diagram for this situation is



Return to the Index of Solutions

Page 5 of 5