1) A continuous random quantity X is known to be normally distributed with a population mean $\mu=20.4$ and a population variance $\sigma^{2}=25.1$.
(a) Evaluate $\mathrm{P}[X \leq 15.0]$.
(b) A random sample of size 4 is taken from this population. \bar{X} is the sample mean.

Evaluate $\mathrm{P}[\bar{X} \leq 15.0]$.
Note: You do not need to use linear interpolation in this question.
Quote your answers correct to only two significant figures.
(a) $\quad X \sim \mathrm{~N}(20.4,25.1)$
$\mathrm{P}[X \leq 15.0]=\mathrm{P}\left[Z \leq \frac{15.0-20.4}{\sqrt{25.1}}\right] \approx \Phi(-1.08)=.14007 \quad$ (from the supplied tables)
Therefore, correct to two significant figures,

$$
\mathrm{P}[X \leq 15.0]=.14
$$

(b) By the Central Limit Theorem, $\bar{X} \sim \mathrm{~N}\left(20.4, \frac{25.1}{4}\right)=\mathrm{N}(20.4,6.275)$
$\mathrm{P}[\bar{X} \leq 15.0]=\mathrm{P}\left[Z \leq \frac{15.0-20.4}{\sqrt{6.275}}\right] \approx \Phi(-2.16)=.01539 \quad$ (from the supplied tables)
Therefore, correct to two significant figures,

$$
\mathrm{P}[\bar{X} \leq 15.0]=.015
$$

[although .016 is actually more accurate.]
2) The joint probability mass function $p(x, y)$ for random quantities X, Y is defined by the table:

	Y				
	$p(x, y)$	-1	0	1	
	-1	. 20	. 15	. 15	
X	0	. 15	. 14	. 11	
	1	. 05	. 01	. 04	

(a) Find the covariance $\operatorname{Cov}(X, Y)$.
(b) Are the random quantities X, Y independent? Why or why not?
(a) Extending the table,

			Y		
	$p(x, y)$	-1	0	1	$p_{X}(x)$
	-1	. 20	. 15	. 15	. 50
X	0	. 15	. 14	. 11	. 40
	1	. 05	. 01	. 04	. 10
	$p_{Y}(y)$. 40	. 30	. 30	1

$\mathrm{E}[X]=-1 \times .5+0 \times .4+1 \times .1=-.5+0+.1=-0.4$
$\mathrm{E}[Y]=-1 \times .4+0 \times .3+1 \times .3=-.4+0+.3=-0.1$
$\mathrm{E}[X Y]=-1 \times-1 \times .20+0+-1 \times 1 \times .15+0+0+0+1 \times-1 \times .05+0+1 \times 1 \times .15$
$=.20-.15-.05+.04=0.04$
$\operatorname{Cov}[X, Y]=\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]=0.04-(-0.4) \times(-0.1)=0.04-0.04 \Rightarrow$

$$
\operatorname{Cov}[X, Y]=0
$$

(b) Zero covariance does not imply independence.

One must test $p(x, y)=p_{X}(x) \cdot p_{Y}(y) \quad \forall(x, y)$.
The test actually passes for the entire top row $\{(-1,-1),(-1,0),(-1,1)\}$!
However it fails for the remaining six entries, for example
$p_{X}(0) \cdot p_{Y}(-1)=.4 \times .4=.16 \neq p(0,1) \Rightarrow$

NO : X, Y are not independent.
3) A box contains twelve (12) gear wheels, of which three (3) are protected with a rust-proofing treatment and the other nine (9) are not protected. A random sample of two (2) gear wheels is drawn, both at once, from the box. Let the random quantity X represent the number of gear wheels in the random sample that are protected.
(a) Show why the probability mass function (p.m.f.) for X is not binomial.
(b) Find $\mathrm{P}[X=3]$.
(c) Find the exact probability mass function $p(x)$ for X.
(d) If the sample were drawn with replacement, then would the p.m.f. for X be binomial? Why or why not?
(a) Let $S_{n}=$ success (protected gear wheel) in trial n.
$\mathrm{P}\left[S_{1}\right]=\mathrm{P}\left[S_{2}\right]=\frac{3}{12}=\frac{1}{4}=0.25$
$\mathrm{P}\left[S_{2} \mid S_{1}\right]=\frac{2}{11}=0 . \dot{1} \dot{8} \neq \mathrm{P}\left[S_{2}\right]$
Therefore the third condition for a binomial p.m.f., (independence of trials) is false. The dependence is strong enough that the binomial p.m.f. is not even a good approximation to the exact p.m.f. (which is hypergeometric).
OR
The independence condition fails because the sample is drawn without replacement from a small population.
(b) Sample size $n=2 \Rightarrow X>2$ is absolutely impossible. Therefore

$$
\mathrm{P}[X=3]=0
$$

(c) In order to obtain x successes in the sample, we must draw x successes from the 3 successes available in the population and we must draw ($2-x$) failures from the 9 failures available in the population. Therefore the exact p.m.f. is

$$
\mathrm{P}[X=x]=\frac{{ }^{3} C_{X} \cdot{ }^{9} C_{2-x}}{{ }^{12} C_{2}}
$$

The individual values are

$$
\begin{aligned}
& \mathrm{P}[X=0]=\frac{{ }^{3} C_{0} \cdot{ }^{9} C_{2}}{{ }^{12} C_{2}}=1 \times \frac{9 \times 8}{2 \times 1} \times \frac{2 \times 1}{12 \times 11}=\frac{\mathbf{6}}{\underline{\mathbf{1 1}}} \\
& \mathrm{P}[X=1]=\frac{{ }^{3} C_{1} \cdot{ }^{9} C_{1}}{{ }^{12} C_{2}}=3 \times 9 \times \frac{2 \times 1}{12 \times 11}=\underline{\underline{\mathbf{9}}} \\
& \mathrm{P}[X=2]=\frac{{ }^{3} C_{2} \cdot{ }^{9} C_{0}}{{ }^{12} C_{2}}=3 \times 1 \times \frac{2 \times 1}{12 \times 11}=\underline{\underline{\underline{\mathbf{1 2}}}}
\end{aligned}
$$

3 (d) If the sampling were with replacement, then
$\mathrm{P}\left[S_{2} \mid S_{1}\right]=\frac{3}{12}=\mathrm{P}\left[S_{2}\right]$ so that trials would be independent.
The other three conditions for a binomial p.m.f. also hold: each trial consists of a pair of complementary outcomes (protected or not); probability of success is constant across trials, $\mathrm{P}\left[S_{1}\right]=\mathrm{P}\left[S_{2}\right]=\frac{3}{12}$;
the number of trials is fixed, $n=2$.
Therefore YES the p.m.f. would be binomial (exactly).
4) A function $f(x)$ of a continuous variable x is defined by

$$
f(x)=\left\{\begin{array}{cc}
105\left(x^{4}-2 x^{5}+x^{6}\right) & (0<x<1) \tag{2}\\
0 & (\text { otherwise })
\end{array}\right.
$$

(a) Show that $f(x)$ is a well-defined probability density function (p.d.f.).
(b) Find the cumulative distribution function (c.d.f.) $F(x)$ for this p.d.f.
(c) Hence evaluate $\mathrm{P}\left[X>\frac{1}{2}\right]$ exactly. Leave your answer as a fraction.

BONUS QUESTION:

(d) Find the population mean μ as a fraction reduced to its lowest terms.
(a) $105\left(x^{4}-2 x^{5}+x^{6}\right)=105 x^{4}(1-x)^{2}>0$ for $0<x<1$.
$f(x)=0$ everywhere else. Therefore $f(x) \geq 0$ for all x.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} 105\left(x^{4}-2 x^{5}+x^{6}\right) d x=\left[105\left(\frac{x^{5}}{5}-\frac{x^{6}}{3}+\frac{x^{7}}{7}\right)\right]_{0}^{1} \\
& =105\left(\frac{1}{5}-\frac{1}{3}+\frac{1}{7}-0\right)=21-35+15=1
\end{aligned}
$$

Therefore $f(x)$ is a well-defined probability density function.
(b) $\quad F(x)=\int_{-\infty}^{x} f(t) d t$

Clearly $F(x)=0$ for all $x<0$ and $F(x)=1$ for all $x>1$. For $0 \leq x \leq 1$,
$F(x)=\int_{0}^{x} 105\left(t^{4}-2 t^{5}+t^{6}\right) d t=\left[105\left(\frac{t^{5}}{5}-\frac{t^{6}}{3}+\frac{t^{7}}{7}\right)\right]_{0}^{x}$
$=105\left(\frac{x^{5}}{5}-\frac{x^{6}}{3}+\frac{x^{7}}{7}-0\right)=x^{5}\left(21-35 x+15 x^{2}\right)$

4 (b) (continued)
Therefore the c.d.f. is
$F(x)=\left\{\begin{array}{cc|}0 & (x<0) \\ x^{5}\left(21-35 x+15 x^{2}\right) & (0 \leq x \leq 1) \\ 1 & (x>1) \\ \hline\end{array}\right.$
(c) $\mathrm{P}\left[X>\frac{1}{2}\right]=1-\mathrm{P}\left[X \leq \frac{1}{2}\right]=1-F\left(\frac{1}{2}\right)$

$$
\begin{aligned}
& =1-\left(\frac{1}{2}\right)^{5}\left(21-35\left(\frac{1}{2}\right)+15\left(\frac{1}{2}\right)^{2}\right)=\left(\frac{1}{2}\right)^{7}(128-(21 \times 4-35 \times 2+15)) \\
& =\frac{128-(84-70+15)}{128}=\frac{128-29}{128} \Rightarrow
\end{aligned}
$$

$$
\mathrm{P}\left[X>\frac{1}{2}\right]=\frac{99}{128}
$$

(d) $\mu=\mathrm{E}[X]=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} 105\left(x^{5}-2 x^{6}+x^{7}\right) d x=\left[105\left(\frac{x^{6}}{6}-\frac{2 x^{7}}{7}+\frac{x^{8}}{8}\right)\right]_{0}^{1}$
$=\left[\frac{35 x^{6}}{2}-30 x^{7}+\frac{105 x^{8}}{8}\right]_{0}^{1}=\frac{140-240+105-0}{8} \Rightarrow$

$$
\mu=\frac{5}{8}
$$

(${ }^{\text {Beturn to the index of solutions }}$

