1) The joint probability mass function $p(x, y)$ for random quantities X, Y is defined by the table:

	Y				
	$p(x, y)$	-1	0	1	
	-1	. 06	. 09	. 15	
X	0	. 10	. 15	. 25	
	1	. 04	. 06	. 10	

(a) Verify that $p(x, y)$ is a valid probability mass function.
(b) Find the correlation coefficient $\rho_{X, Y}$.
(c) Are the random quantities X, Y independent? Why or why not?
(a) Completing the marginal p.m.f.s:

- All nine values of $p(x, y)$ are positive.
- Clearly $\sum_{x=-1}^{1} \sum_{y=-1}^{1} p(x, y)=1$ (coherence).

Therefore $p(x, y)$ is a valid probability mass function.
(b) $\mathrm{E}[X]=\sum_{x=-1}^{1} x \cdot p_{X}(x)=-1 \times .30+0 \times .50+1 \times .20=-0.10$
$\mathrm{E}[Y]=\sum_{y=-1}^{1} y \cdot p_{Y}(y)=-1 \times .20+0 \times .30+1 \times .50=0.30$

1 (b) (continued)

$$
\begin{aligned}
& \mathrm{E}[X Y]=\sum_{x=-1}^{1} \sum_{y=-1}^{1} x y \cdot p(x, y)= \\
& =-1 \times-1 \times .06+0+-1 \times 1 \times .15+0+0+0+1 \times-1 \times .04+0+1 \times 1 \times .10=-0.03 \\
& \operatorname{Cov}(X, Y)=\mathrm{E}[X Y]-\mathrm{E}[X] \cdot \mathrm{E}[Y]=-0.03-0.30 \times(-0.10)=-0.03+0.03=0 \\
& \operatorname{Cov}(X, Y)=0 \Rightarrow \\
& \quad \rho=0
\end{aligned}
$$

Note that there is no need to evaluate $\mathrm{V}[X]$ or $\mathrm{V}[Y]$.
[The values are $\mathrm{V}[X]=0.49$ and $\mathrm{V}[Y]=0.61$.]
An Excel spreadsheet is available to illustrate this solution.
(c) $\rho=0 \nRightarrow \quad$ independence!

We must therefore check that $p(x, y)=p_{X}(x) \cdot p_{Y}(y) \quad \forall(x, y)$.
$p_{X}(-1) \cdot p_{Y}(-1)=.3 \times .2=.06=p(-1,-1)$
$p_{X}(-1) \cdot p_{Y}(0)=.3 \times .3=.09=p(-1,0)$
$p_{X}(-1) \cdot p_{Y}(1)=.3 \times .5=.15=p(-1,1)$
$p_{X}(0) \cdot p_{Y}(-1)=.5 \times .2=.10=p(0,-1)$
$p_{X}(0) \cdot p_{Y}(0)=.5 \times .3=.15=p(0,0)$
$p_{X}(0) \cdot p_{Y}(1)=.5 \times .5=.25=p(0,1)$
$p_{X}(1) \cdot p_{Y}(-1)=.2 \times .2=.04=p(1,-1)$
$p_{X}(1) \cdot p_{Y}(0)=.2 \times .3=.06=p(1,0)$
$p_{X}(1) \cdot p_{Y}(1)=.2 \times .5=.10=p(1,1)$
Therefore

YES

2) Lamps from a certain factory are known to have lifetimes T that are independent random quantities following an exponential distribution with a mean lifetime of 10,000 hours.
(a) Show that the probability p that a randomly chosen lamp has a lifetime exceeding 23,026 hours is 0.10000 , correct to five decimal places.
(b) A random sample of ten such lamps is tested. Let X be the number of lamps in this sample that have lifetimes exceeding 23,026 hours. Does X follow a binomial distribution exactly, approximately or not at all? Justify your answer.
(c) Assume that $p=0.1$ exactly. Write down the value of $\mathrm{E}[X]$.
(d) Find $\mathrm{P}[X<2]$.
(e) Another random sample of 100 lamps is tested. Estimate the probability that the sample mean lifetime \bar{T} will be less than 9,000 hours.
(a) $\mu=10000 \Rightarrow \lambda=\frac{1}{10000}$
$p=\mathrm{P}[T>23026]=e^{-\lambda t}=\exp \left(-\frac{23026}{10000}\right)=e^{-2.3026}=0.099998 \ldots$
Therefore $p=0.10000$, correct to $5 \mathrm{~d} . \mathrm{p}$.
(b) Let "success" = "lamp has lifetime exceeding 23,026 hours"

- Each trial (lamp) has a complementary pair of outcomes (success or not);
- $\mathrm{P}[$ success $]=$ constant $=p$;
- The trials are independent (each lamp has the same P[success], independently of the others);
- The sample size is fixed $(n=10)$.

Therefore the p.m.f. of X is binomial exactly.
(c) $\mathrm{E}[X]=n p=10 \times .1=1$
(d) $\mathrm{P}[X<2]=\mathrm{P}[X \leq 1]=\mathrm{P}[X=0]+\mathrm{P}[X=1]=b(0 ; 10, .1)+b(1 ; 10, .1)$

$$
=(.9)^{10}+{ }^{10} C_{1}(.1)^{1}(.9)^{9}=.3486784401+.3874204890=.736098 \ldots
$$

Therefore, correct to 3 s.f.,

$$
\mathrm{P}[X<2]=.736
$$

2 (e) $n=100$. By the central limit theorem, \bar{T} will follow a normal distribution to an excellent approximation.

$$
\begin{aligned}
& \mathrm{E}[T]=\mu=10000 \Rightarrow \sqrt{\mathrm{~V}[T]}=\sigma=10000 \\
& \Rightarrow \mathrm{E}[\bar{T}]=10000 \text { and } \sqrt{\mathrm{V}[\bar{T}]}=\frac{\sigma}{\sqrt{n}}=\frac{10000}{10}=1000 \\
& \Rightarrow \bar{T} \sim \mathrm{~N}\left(10000,(1000)^{2}\right) \text { to an excellent approximation. } \\
& \Rightarrow \mathrm{P}[\bar{T}<9000]=\mathrm{P}\left[Z<\frac{9000-10000}{1000}\right]=\Phi(-1.00)=.15866 \ldots \Rightarrow \\
& \qquad \mathrm{P}[\bar{T}<9000] \approx .159
\end{aligned}
$$

3) Two percent of all items from a production line are known to be defective.

A quality control process rejects a defective item 99% of the time and it rejects a good (non-defective) item 5% of the time.

Given that the quality control process has just rejected an item, find the odds that the item is, indeed, defective.

Let $D=$ "item is defective", $G=D=$ "item is good (not defective)",
$R=$ "item is rejected" and $A=R=$ "item is accepted", then
From the question, $\mathrm{P}[D]=.02, \mathrm{P}[R \mid D]=.99$ and $\mathrm{P}[R \mid D]=\mathrm{P}[R \mid G]=.05$
We are required to find the odds associated with $\mathrm{P}[D \mid R]$.

OR

using Bayes' theorem directly,

$$
\begin{aligned}
& \mathrm{P}[D \mid R]=\frac{\mathrm{P}[R \mid D] \cdot \mathrm{P}[D]}{\mathrm{P}[R \mid D] \cdot \mathrm{P}[D]+\mathrm{P}[R \mid G] \cdot \mathrm{P}[G]} \\
& \quad=\frac{.99 \times .02}{.99 \times .02+.05 \times .98}=\frac{.0198}{.0198+.0490}=\frac{.0198}{.0688}=\frac{99}{344} \\
& r=\frac{p}{1-p}=\frac{99}{344} \times \frac{344}{245}=99: 245 \text { on }, \text { or }
\end{aligned}
$$

$$
r=245 \text { :99 against }
$$

An Excel spreadsheet is available to illustrate this solution.
4) A cumulative distribution function $F(x)$ of a continuous variable x is defined by

$$
F(x)=\left\{\begin{array}{cc}
0 & (x<0) \\
21 x^{5}-35 x^{6}+15 x^{7} & (0 \leq x \leq 1) \\
1 & (x>1)
\end{array}\right.
$$

(a) Evaluate $\mathrm{P}\left[X>\frac{1}{2}\right]$ exactly. Leave your answer as a fraction.
(b) Find the probability density function (p.d.f.) for this c.d.f. in its simplest form;

BONUS QUESTION:
(c) Find the population mean μ as a fraction reduced to its lowest terms.
(a) $\mathrm{P}\left[X>\frac{1}{2}\right]=1-\mathrm{P}\left[X \leq \frac{1}{2}\right]=1-F\left(\frac{1}{2}\right)=1-\left(21\left(\frac{1}{2}\right)^{5}-35\left(\frac{1}{2}\right)^{6}+15\left(\frac{1}{2}\right)^{7}\right)$
$=1-\left(\frac{1}{2}\right)^{7}(21 \times 4-35 \times 2+15)=\frac{128-(84-70+15)}{128}=\frac{128-29}{128} \Rightarrow$

$$
\mathrm{P}\left[X>\frac{1}{2}\right]=\frac{\mathbf{9 9}}{\mathbf{1 2 8}}
$$

(b) $\quad f(x)=\frac{d F}{d x} \quad \forall x \quad$ Clearly $f(x)=0$ for $x<0$ and for $x>1$.

For $0<x<1, \quad \frac{d F}{d x}=105 x^{4}-210 x^{5}+105 x^{6}=105 x^{4}\left(1-2 x+x^{2}\right)$
$f(x)$ is continuous both at $x=0$ and at $x=1$. Therefore the p.d.f. is

$$
f(x)=105 x^{4}(1-x)^{2}, \quad(0 \leq x \leq 1)
$$

(c) $\mu=\int_{-\infty}^{\infty} x \cdot f(x) d x=0+\int_{0}^{1}\left(105 x^{5}-210 x^{6}+105 x^{7}\right) d x+0$

$$
\begin{gathered}
=\left[\frac{35 x^{6}}{2}-30 x^{7}+\frac{105 x^{8}}{8}\right]_{0}^{1}=\frac{140-240+105}{8}-0 \Rightarrow \\
\mu=\frac{5}{8}
\end{gathered}
$$

[This probability distribution is actually $\operatorname{Beta}(\alpha=5, \beta=3, A=0, B=1)$.]
(Back to the index of solutions

