ENGI 3423

1) The joint probability mass function p(x, y) for random quantities X, Y is defined by the table:

			Y		
	p(x, y)	-1	0	1	
	-1	.06	.09	.15	
X	0	.10	.15	.25	
	1	.04	.06	.10	

(a) Verify that $p(x, y)$ is a valid probability mass function.	[2]
(b) Find the correlation coefficient $\rho_{X,Y}$.	[7]
(c) Are the random quantities X, Y independent? Why or why not?	[4]

(a) Completing the marginal p.m.f.s:

			Y	_	_
	p(x, y)	-1	0	1	$p_X(x)$
	-1	.06	.09	.15	.30
X	0	.10	.15	.25	.50
	1	.04	.06	.10	.20
	$p_{Y}(y)$.20	.30	.50	1

- All nine values of p(x, y) are positive.
- Clearly $\sum_{x=-1}^{1} \sum_{y=-1}^{1} p(x, y) = 1$ (coherence).

Therefore p(x, y) is a valid probability mass function.

(b)
$$E[X] = \sum_{x=-1}^{1} x \cdot p_x(x) = -1 \times .30 + 0 \times .50 + 1 \times .20 = -0.10$$

 $E[Y] = \sum_{y=-1}^{1} y \cdot p_y(y) = -1 \times .20 + 0 \times .30 + 1 \times .50 = 0.30$

1 (b) (continued) $E[XY] = \sum_{x=-1}^{1} \sum_{y=-1}^{1} xy \cdot p(x, y) =$ $= -1 \times -1 \times .06 + 0 + -1 \times 1 \times .15 + 0 + 0 + 0 + 1 \times -1 \times .04 + 0 + 1 \times 1 \times .10 = -0.03$ $Cov(X,Y) = E[XY] - E[X] \cdot E[Y] = -0.03 - 0.30 \times (-0.10) = -0.03 + 0.03 = 0$ $Cov(X,Y) = 0 \qquad \Longrightarrow$ $\rho = 0$

Note that there is no need to evaluate V[X] or V[Y]. [The values are V[X] = 0.49 and V[Y] = 0.61.] An <u>Excel spreadsheet</u> is available to illustrate this solution.

(c) $\rho = 0 \not\preccurlyeq$ independence! We must therefore check that $p(x, y) = p_x(x) \cdot p_y(y) \quad \forall (x, y)$. $p_x(-1) \cdot p_y(-1) = .3 \times .2 = .06 = p(-1,-1) \qquad \checkmark$ $p_x(-1) \cdot p_y(0) = .3 \times .3 = .09 = p(-1,0) \qquad \checkmark$ $p_x(-1) \cdot p_y(1) = .3 \times .5 = .15 = p(-1,1) \qquad \checkmark$ $p_x(0) \cdot p_y(-1) = .5 \times .2 = .10 = p(0,-1) \qquad \checkmark$ $p_x(0) \cdot p_y(0) = .5 \times .3 = .15 = p(0,0) \qquad \checkmark$ $p_x(0) \cdot p_y(1) = .5 \times .5 = .25 = p(0,1) \qquad \checkmark$ $p_x(1) \cdot p_y(-1) = .2 \times .2 = .04 = p(1,-1) \qquad \checkmark$ $p_x(1) \cdot p_y(0) = .2 \times .3 = .06 = p(1,0) \qquad \checkmark$ Therefore **YES**

[2]

- 2) Lamps from a certain factory are known to have lifetimes T that are independent random quantities following an exponential distribution with a mean lifetime of 10,000 hours.
 - (a) Show that the probability p that a randomly chosen lamp has a lifetime exceeding [4] 23,026 hours is 0.100 00, correct to five decimal places.
 - (b) A random sample of ten such lamps is tested. Let X be the number of lamps in [2] this sample that have lifetimes exceeding 23,026 hours. Does X follow a binomial distribution exactly, approximately or not at all? Justify your answer.
 - (c) Assume that p = 0.1 exactly. Write down the value of E[X].

(d) Find
$$P[X < 2]$$
. [3]

(e) Another random sample of 100 lamps is tested. Estimate the probability that the [4] sample mean lifetime \overline{T} will be less than 9,000 hours.

(a)
$$\mu = 10000 \implies \lambda = \frac{1}{10000}$$

 $p = P[T > 23026] = e^{-\lambda t} = \exp\left(-\frac{23026}{10000}\right) = e^{-2.3026} = 0.099998...$
Therefore $p = 0.100\ 00$, correct to 5 d.p.

- (b) Let "success" = "lamp has lifetime exceeding 23,026 hours"
 - Each trial (lamp) has a complementary pair of outcomes (success or not);
 - P[success] = constant = p;
 - The trials are independent (each lamp has the same P[success], independently of the others);
 - The sample size is fixed (*n* = 10). Therefore the p.m.f. of *X* is **binomial exactly**.
- (c) $E[X] = np = 10 \times .1 = 1$

(d)
$$P[X < 2] = P[X \le 1] = P[X = 0] + P[X = 1] = b(0; 10, .1) + b(1; 10, .1)$$

= $(.9)^{10} + {}^{10}C_1(.1)^1(.9)^9 = .3486784401 + .3874204890 = .736098...$
Therefore, correct to 3 s.f.,
 $P[X < 2] = .736$

2 (e) n = 100. By the central limit theorem, \overline{T} will follow a normal distribution to an excellent approximation.

$$E[T] = \mu = 10000 \implies \sqrt{V[T]} = \sigma = 10000$$

$$\Rightarrow E[\overline{T}] = 10000 \text{ and } \sqrt{V[\overline{T}]} = \frac{\sigma}{\sqrt{n}} = \frac{10000}{10} = 1000$$

$$\Rightarrow \overline{T} \sim N(10000, (1000)^2) \text{ to an excellent approximation.}$$

$$\Rightarrow P[\overline{T} < 9000] = P[Z < \frac{9000 - 10000}{1000}] = \Phi(-1.00) = .15866... \Rightarrow$$

$$P[\overline{T} < 9000] \approx .159$$

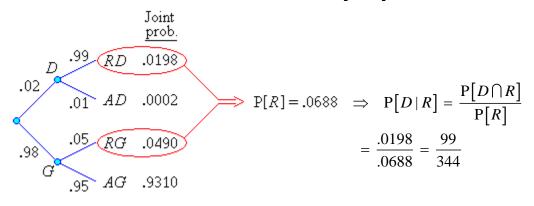
ENGI 3423

Two percent of all items from a production line are known to be defective. [10]
 A quality control process rejects a defective item 99% of the time and it rejects a good (non-defective) item 5% of the time.

Given that the quality control process has just rejected an item, find the odds that the item is, indeed, defective.

Let D = "item is defective", G = D = "item is good (not defective)", R = "item is rejected" and A = R = "item is accepted", then

From the question, P[D] = .02, P[R | D] = .99 and P[R | D] = P[R | G] = .05We are required to find the odds associated with P[D | R].



OR

using Bayes' theorem directly,

$$P[D|R] = \frac{P[R|D] \cdot P[D]}{P[R|D] \cdot P[D] + P[R|G] \cdot P[G]}$$

= $\frac{.99 \times .02}{.99 \times .02 + .05 \times .98} = \frac{.0198}{.0198 + .0490} = \frac{.0198}{.0688} = \frac{.99}{.044}$
 $r = \frac{p}{1-p} = \frac{.99}{.044} \times \frac{.0344}{.245} = .99 : 245 \text{ on , or}$
 $r = 245 : 99 \text{ against}$

An Excel spreadsheet is available to illustrate this solution.

4) A cumulative distribution function F(x) of a continuous variable x is defined by

$$F(x) = \begin{cases} 0 & (x < 0) \\ 21x^5 - 35x^6 + 15x^7 & (0 \le x \le 1) \\ 1 & (x > 1) \end{cases}$$

- (a) Evaluate $P\left[X > \frac{1}{2}\right]$ exactly. Leave your answer as a fraction. [6]
- (b) Find the probability density function (p.d.f.) for this c.d.f. in its simplest form; [6] [that is, factor f(x) as much as possible.]

BONUS QUESTION:

(c) Find the population mean μ as a fraction reduced to its lowest terms. [+3]

(a)
$$P\left[X > \frac{1}{2}\right] = 1 - P\left[X \le \frac{1}{2}\right] = 1 - F\left(\frac{1}{2}\right) = 1 - \left(21\left(\frac{1}{2}\right)^5 - 35\left(\frac{1}{2}\right)^6 + 15\left(\frac{1}{2}\right)^7\right)$$

 $= 1 - \left(\frac{1}{2}\right)^7 \left(21 \times 4 - 35 \times 2 + 15\right) = \frac{128 - (84 - 70 + 15)}{128} = \frac{128 - 29}{128} \implies$
 $P\left[X > \frac{1}{2}\right] = \frac{99}{128}$

(b)
$$f(x) = \frac{dF}{dx}$$
 $\forall x$ Clearly $f(x) = 0$ for $x < 0$ and for $x > 1$.
For $0 < x < 1$, $\frac{dF}{dx} = 105x^4 - 210x^5 + 105x^6 = 105x^4(1 - 2x + x^2)$
 $f(x)$ is continuous both at $x = 0$ and at $x = 1$. Therefore the p.d.f. is

$$f(x) = 105x^4(1-x)^2, \quad (0 \le x \le 1)$$

(c)
$$\mu = \int_{-\infty}^{\infty} x \cdot f(x) dx = 0 + \int_{0}^{1} (105x^{5} - 210x^{6} + 105x^{7}) dx + 0$$

 $= \left[\frac{35x^{6}}{2} - 30x^{7} + \frac{105x^{8}}{8} \right]_{0}^{1} = \frac{140 - 240 + 105}{8} - 0 \implies \mu = \frac{5}{8}$

[This probability distribution is actually Beta($\alpha = 5, \beta = 3, A = 0, B = 1$).]

Solutions Back to the index of solutions