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Example 5.01 
 
Given that rolling two fair dice has produced a total of at least 10, find the probability 
that exactly one die is a ‘6’.  
 
Let  E1  =  "exactly one '6' " 
and  E2  =  "total ≥ 10" 
 
The required probability is 
P[E1 | E2 ] . 
 
The "given" event E2 is highlighted 
in the diagram by a green border 
and it supplies a reduced sample 
space of six equally likely sample  
points, four of which also fall  
inside E1 . 
 
Therefore P[E1 | E2 ]  = 4/6  =  2/3 . 
 
Also, (with all sample points  
equally likely), 
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Because intersection is commutative,  
 P[E1 E2]   =   P[E2 E1]   ⇒ P[E1|E2] • P[E2]   =   P[E2|E1] • P[E1] 
 
 
Events  E1, E2  are independent if   P[E1|E2] = P[E1]    (and are dependent otherwise). 
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Example 5.02 
 
Show that the events   
     E1  =  “fair die  A  is a ‘6’ ”  and   E2  =  “fair die  B  is a ‘6’ ”   
are independent. 
 
Let us find P[E2 | E1] . 
The final column in the diagram  
represents the six [equally likely]  
sample points in the reduced  
sample space of the given event E1 . 
 
Only one of these six points also  
lies in E2 . 
 
Therefore   P[E2 | E1]  =  1/6 . 
 
Alternatively,  
P[E1]  =  6/36  =  1/6  
 
P[E2]  =  6/36  =  1/6 
and 
P[E1E2]  =  1/36 
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Therefore    P[E2 | E1]  =  P[E2]    ⇒    E1 and E2 are independent. 
 
 
Stochastic independence: 
Events  E1, E2  are stochastically independent (or just independent) if   P[E1|E2] = P[E1]. 
 
Equivalently, the events are independent iff (if and only if)   P[E1 E2]   =   P[E1] • P[E2] . 
Compare this with the general multiplication law of probability:  
  

P[E1 E2]   =   P[E1|E2] • P[E2] 



ENGI 3423 Conditional Probability and Independence Page 5-03 
 

 

Example 5.03 
 
A bag contains two red, three blue and four yellow marbles.  Three marbles are taken at 
random from the bag,  

(a)   without replacement; 
(b)   with replacement. 

In each case, find the probability that the colours of the three marbles are all different. 
 
Let  "E"  represent the desired event and "RBY" represent the event "red marble 
first and blue marble second and yellow marble third" and so on.   Then  
E  =  RBY  or  BYR  or  YRB  or  YBR  or  RYB  or  BRY   (all m.e.) 
 
(a) 
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[Note that  P[B2 | R1]  =  3 / 8, because, after one red marble has been drawn from 
the bag, eight marbles remain, three of which are blue.] 
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(b) 
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Note that replacement reduces the probability of different colours. 
 
 
A valid alternative method is a tree diagram (shown for part (a) on the next page):  
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Example 5.03  (continued) 
 
(a) 

 
 
 
Independent  vs. Mutually Exclusive Events: 
 
Two possible events  E1 and E2 are independent if and only if   P[E1 E2] = P[E1] • P[E2] . 
 
Two possible events  E1 and E2 are mutually exclusive if and only if   P[E1 E2] = 0 . 
 
No pair of possible events can satisfy both conditions, because   P[E1] • P[E2] ≠ 0 . 
A pair of independent possible events cannot be mutually exclusive.    
A pair of mutually exclusive possible events cannot be independent.    
 
An example with two teams in the playoffs of some sport will illustrate this point. 
Example 5.04 
Teams play each other:    Outcomes for teams A and B are: 
       
    m.e.  and  dependent 
    
    
 
Teams play other teams:    Outcomes for teams A and B are: 

   
  
  
  

      indep.  and  not m.e.
      (assuming no communication
        between the two matches)
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A set of mutually exclusive and collectively exhaustive events is a partition of S.  
 

 
 
A set of mutually exclusive events   E1, E2, ... , En  is collectively exhaustive if  
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[One may partition any event  A  into the mutually exclusive pieces that fall inside 
each member of the partition { Ei } of S .] 
 
Total probability law:  
 [ ] [ ]P PiAE A=∑  
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which leads to Bayes’ theorem (on the next page). 
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Bayes’ Theorem:  
 
When an event  A  can be partitioned into a set of  n  mutually exclusive and collectively 
exhaustive events  Ei , then  
 

[ ] [ ] [

[ ] [

]

]∑
=

⋅

⋅
= n

i
ii

kk
k

EPEAP

EPEAP
AEP

1

|

|
|  

 
 
Example 5.05 
 
The stock of a warehouse consists of boxes of high, medium and low quality lamps in the 
respective proportions 1:2:2.  The probabilities of lamps of these three types being 
unsatisfactory are 0, 0.1 and 0.4 respectively.   If a box is chosen at random and one lamp 
in the box is tested and found to be satisfactory, what is the probability that the box 
contains  

(a)   high quality lamps; 
(b)   medium quality lamps;  
(c)   low quality lamps? 

 
Let {H, M, L} represent the event that the lamp is {high, medium, low} quality, 
respectively.   The probabilities of events  H, M, L  are in the ratio  1 : 2 : 2. 
Let  A =  "lamp is satisfactory". 
 
P[A | L]  =  .6          (from  P[~A | L]  =  .4) 
P[A | M]  =  .9         (from  P[~A | M]  =  .1) 
P[A | H]  =  1  (absolutely certain) 
 
P[H]  =  1 / (1+2+2)  =  1/5 
P[M]  =  P[L]  =  2/5 
 
(a) 
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  (Bayes’ theorem)  
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Note that the denominator,  4/5 , is also P[A]  and is the same in all three parts of 
this question. 
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Example 5.05 (continued)  
 
(b) 
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(c) 
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Note that the ratio of the probabilities is  H : M : L  =  5 : 9 : 6 . 
It is not  10 : 9 : 6 , because the number of high quality lamps is only half that of 
each of the other two types. 
 
An alternative is a tree diagram: 
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nother version of the total probability law: 
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Updating Probabilities using Bayes’ Theorem 
 
Let F  be the event “a flaw exists in a component” 
and D  be the event “the detector declares that a flaw exists” 
then 

[ ] [ ]
[ ] [ ]FP
DP

FDP
DFP ×=

|
|  

 
 
 
and  P[D ] = normalizing constant =  [ ]P PDF DF⎡ ⎤+ ⎣ ⎦  

         [ ] [ ]P | P P | PD F F D F F⎡ ⎤ ⎡ ⎤= + ⎣ ⎦ ⎣ ⎦  
 
Example 5.06  
 
Suppose that prior experience suggests  
P[F ] = .2 , P[D | F ] = .8  and P[D | ~F ] = .3 
then  
  P .F⎡ ⎤ =⎣ ⎦ 8

[ ] [ ]and P P P .8 .2 .3 .8 .16 .24D DF DF⎡ ⎤= + = × + × = + =⎣ ⎦ .40  
 
⇒ P[F | D]  =  (.8 / .4) × .2  =  2 × .2  =  .4 
 
 
 
 
 
The observation of event  D  has changed our assessment of the probability of a flaw 
from the prior  P[F ] = .2  to the posterior  P[F | D ] = .4 . 
 
[It is common sense that the detection of a flaw will increase our estimate of the 
probability of a future flaw, while a flaw-free run will decrease that estimate.] 
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Example 5.07  
A binary communication channel is as shown:  

 
 
Inputs:  
 
P[A]  =  .6   ⇒    P[B]  =  P[~A]  =  .4 
 
Channel transition probabilities:  
 
P[C | A]  =  .2      ⇒     P[D | A]  =  .8 
 
P[C | B]  =  .7      ⇒     P[D | B]  =  .3 
 
⇒  P[ AC ]  =  .2 × .6  =  .12    P[ AD ]  =  .8 × .6  =  .48 
 
 
 P[ BC ]  =  .7 × .4  =  .28   P[ BD ]  =  .3 × .4  =  .12 
 
[So, 40% of the time, the output will be C.   Given that C is the output, there is a 
probability of 28/40 that the input was B, but only 12/40 that the input was A.  
Therefore, if C is the output, then B is the more likely input, by far.] 
 
[A similar argument applies, to conclude that, given an output of D, an input of A is 
four times more likely than an input of B.   A mapping from outputs back to inputs 
then follows:] 
→  optimum receiver:  

m(C) =   B  ,  m(D) =  A     
 
⇒  P[correct transmission] =  P[AD ∪ BC] 
  

 =  .48  +  .28  =  .76   
  
⇒  P[error]  =  .24 
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Another diagram: 

 
 
 
More generally, for a network of  M  inputs (with prior {P[mi]}) and  N  outputs  
(with {P[rj | mi]}),   optimize the system:  
 
Find all posterior {P[mi |rj ]}. 
 

Map receiver  rj  to whichever input mi has the greatest P[mi|rj ] (or greatest P[mi ∧ rj ]). 
 
Then P[correct decision] =  

Σ ( P[m(rj) | rj]×P[rj] ) 
               j 
Diagram (for M=2, N=3): 

 
 
[See also pp. 33-37, “Principles of Communication Engineering”, by Wozencraft and 
Jacobs, (Wiley).] 

[End of Devore Chapter 2] 
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Some Additional Tutorial Examples  
 
Example 5.08 (This example is also Problem Set 2 Question 5(f)) 
 
Events A, B, C  are such that the  
probabilities are as shown in this  
Venn diagram. 
 
Are the three events independent? 
 
P[A]  =  .05 , P[B]  =  .04 , P[C]  =  .02 ,  
 
P[AB]  =  .002 ,   P[BC]  =  .0012 ,   
P[CA]  =  .002 ,  
 
P[ABC]  =  .00004  
 
 
⇒ P[A] ×  P[B] × P[C]  =  .05 × .04 × .02  =  .00004  =  P[ABC] 
 –  but this is not sufficient! 
 
 P[A] ×  P[B]  =  .05 × .04  =  .002  =  P[AB]    
⇒    A, B  are stochastically independent 
 
but P[B] × P[C]  =  .04 × .02  =  .0008  ≠  P[BC] 
⇒    B, C  are not independent 
 
and P[C] × P[A]  =  .02 × .05  =  .001  ≠  P[CA] 
⇒    C, A  are not independent  
 
Therefore { A, B, C } are not independent (despite P[A] ×  P[B] × P[C]  =  P[ABC]) 
 
 
 

 
Three events { A, B, C }  are mutually independent if and only if 

 
P[A B C]  =  P[A] × P[B] × P[C] 

and 
all three pairs of events { A, B }, { B, C }, { C, A } are independent 

 
 
 
 
 
 
 
 
 
[Reference: George, G.H., Mathematical Gazette, vol. 88, #513, 85-86, Note 88.76 

“Testing for the Independence of Three Events”, 2004 November]  

 



ENGI 3423 Conditional Probability and Independence Page 5-12 
 

Example 5.09  
 
Three women and three men sit at random in a row of six seats. 
Find the probability that the men and women sit in alternate seats. 
 
In the sample space S there is no restriction on seating the six people 
⇒ n(S)  =  6 ! 
 
Event  E  =  alternating seats, in either the pattern 
 
 M  W  M  W  M  W  
 
or 
 
 W  M  W  M  W  M   
 
In each case, the 3 [wo]men can be seated in their 3 places in  3 × 2 × 1  =  3 ! ways. 
 
The women’s seating is independent of the men’s seating. 
 
Therefore n(E)  =  2 × 3 ! × 3 !    and  

 [ ] ( )2 3 2 3!
P

6 5 4 3!
E

× × ×
= =

× × ×
1

10
 

 
OR 
 
In event E, any of the six people may sit in the first seat. 
The second seat may be occupied only by the three people of opposite sex to the 
person in the first seat. 
The third seat must be filled by one of the two remaining people of the opposite sex 
as the person in the second seat. 
The fourth seat must be filled by one of the two remaining people of the opposite sex 
as the person in the third seat. 
The fifth seat must be filled by the one remaining person of the opposite sex as the 
person in the fourth seat. 
Only one person remains for the sixth seat. 
 
Therefore n(E)  =  6 × 3 × 2 × 2 × 1 × 1 
 
and  n(S)  =  6 × 5 × 4 × 3 × 2 × 1 
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Example 5.10  (Devore Exercises 2.3 Question 36, Page 66 in the 7th edition) 
 
An academic department with five faculty members has narrowed its choice for a new 
department head to either candidate A or candidate B.   Each member has voted on a slip 
of paper for one of the candidates.   Suppose that there are actually three votes for A and 
two for B.   If the slips are selected for tallying in random order, what is the probability 
that A remains ahead of B throughout the vote count?   (For example, this event occurs if 
the selected ordering is AABAB but not for ABBAA). 
 
Only two events are inside event E:   AABAB  and  AAABB . 
 
Therefore n(E)  =  2 
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If one treats the five votes as being completely distinguishable from each other, then 
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[Additional notes may be placed on this page] 
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