A random quantity [r.q.] maps an outcome to a number.
Example 6.01:
$P=$ "A student passes ENGI 3423"
$F=$ "That student fails ENGI 3423"
The sample space is $S=\{\boldsymbol{P}, \boldsymbol{F}\}$

Define $\quad X(P)=1, \quad X(F)=0, \quad$ then
X is a random quantity.
Definition: A Bernoulli random quantity has only two possible values: 0 and 1.

Example 6.02
Let $\quad Y=$ the sum of the scores on two fair six-sided dice.
$Y(i, j)=\boldsymbol{i}+\boldsymbol{j}$
The possible values of Y are: $\quad 2,3,4, \ldots, 12$

Example 6.03
Let $\quad N=$ the number of components tested when one fails.
The possible values of N are: $\quad \mathbf{1 , 2 , 3}, \ldots$

A set D is discrete if $n(D)$ is finite
OR $n(D)$ is "countably infinite" (consecutive values can be found)

Examples:
6.03. Set $\mathbb{N}=$ (the set of all natural numbers) is discrete (countably infinite)
6.04. $A=\{x: 1 \leq x \leq 2$ and x is real $\}$ is not discrete (it is continuous)
[' 1 ' is the smallest value, but what is the second-smallest value?]

A random quantity is discrete if its set of possible values is a discrete set.
Each value of a random quantity has some probability of occurring. The set of probabilities for all values of the random quantity defines a function $p(x)$, known as the

> Probability Mass Function
> (or probability function)
> (p.m.f.):
> $p(x)=\mathrm{P}[X=x]$

Note: X is a random quantity, but x is a particular value of that random quantity.
All probability mass functions satisfy both of these conditions:

$$
\begin{array}{|ll|}
\hline p(x) \geq 0 & \forall x \\
\text { and } & \sum_{\text {all } x} p(x)=1 \\
\hline
\end{array}
$$

[Note that these two conditions together ensure that $p(x) \leq 1 \forall x$.]

Example 6.05

$$
f(x)=\left\{\begin{array}{cc}
c x^{2} & x=1,2,3 \\
0 & \text { otherwise }
\end{array} \leftarrow\right. \text { [NOTE: may omit this branch] }
$$

[$f(x)=0$ is assumed for all x not mentioned in the definition of $f(x)$.]
$f(x)$ is a probability mass function. Find the value of the constant c.
$p(x) \geq 0 \quad \forall x \quad \Rightarrow \quad c \geq 0$
$\sum p(x)=1 \Rightarrow c(1)^{2}+c(2)^{2}+c(3)^{2}=1$

Therefore

$$
c=\frac{1}{14}
$$

Bar Chart:

Example 6.06
Find the p.m.f. for $\quad X=$ (the number of heads when two fair coins are tossed).
Let $\quad H_{i}=$ head on coin i and $\quad T_{i}=$ tail on coin i.
The possible values of X are $X=\mathbf{0} \quad\left(\mathbf{T}_{\mathbf{1}} \mathbf{T}_{\mathbf{2}}\right)$
1 ($\mathrm{H}_{1} \mathrm{~T}_{2}$ or $\left.\mathrm{T}_{1} \mathrm{H}_{2}\right)$
or $2 \quad\left(H_{1} H_{2}\right)$

$$
\begin{aligned}
\mathbf{P}[X=0] & =\mathrm{P}\left[\mathrm{~T}_{1} \mathbf{T}_{2}\right] \\
& =\mathrm{P}\left[\mathrm{~T}_{1}\right] \mathrm{P}\left[\mathrm{~T}_{2} \mid \mathrm{T}_{1}\right] \\
& =1 / 2 \times 1 / 2 \quad \text { (independent events) } \\
& =1 / 4 \\
& \\
\mathbf{P}[X=1] & =\mathrm{P}\left[\mathbf{H}_{1} \mathbf{T}_{2}\right]+\mathrm{P}\left[\mathbf{T}_{1} \mathbf{H}_{2}\right] \quad \text { (mutually exclusive events) } \\
& =\mathrm{P}\left[\mathbf{H}_{1}\right] \mathrm{P}\left[\mathrm{~T}_{2}\right]+\mathrm{P}\left[\mathrm{~T}_{1}\right] \mathrm{P}\left[\mathrm{H}_{2}\right] \quad \text { (independent events) } \\
& =11 / 2 \times 1 / 2+1 / 2 \times 1 / 2 \\
& =1 / 4+1 / 4 \\
& =1 / 2
\end{aligned}
$$

$$
\mathbf{P}[X=2]=\mathbf{P}\left[\mathbf{H}_{1} \mathbf{H}_{2}\right]
$$

$$
=1 / 2 \times 1 / 2
$$

$$
=1 / 4
$$

Therefore the p.m.f. is

$$
f(x)= \begin{cases}\frac{1}{4} & (x=0,2) \\ \frac{1}{2} & (x=1) \\ 0 & (\text { otherwise })\end{cases}
$$

The Discrete Uniform Probability Distribution

A random quantity X, whose n possible values $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ are all equally likely, possesses a discrete uniform probability distribution.

$$
P\left[X=x_{i}\right]=\frac{1}{n} \quad(i=1,2, \ldots, n)
$$

An example is $X=$ (the score on a fair standard six-sided die), for which $n=6$ and $x_{i}=i$.

Line graph:

Cumulative Distribution Function (c.d.f.)

$$
F(x)=\mathrm{P}[X \leq x]=\sum_{y: y \leq x} p(y)
$$

Example 6.07

Find the cumulative distribution function for
$X=$ (the number of heads when two fair coins are tossed).
The possible values of X are 0,1 and 2 .

When $x<0$,
$F(x)=\mathrm{P}[X \leq x] \leq \mathrm{P}[X<0]=0 \quad \Rightarrow \quad F(x)=0$

When $x>2$,

$$
F(x)=\mathrm{P}[X \leq x]=F(2)+\mathrm{P}[2<X \leq x]=\mathbf{1}+\mathbf{0}=\mathbf{1}
$$

When $1<x<2, \quad \mathrm{P}[X \leq x]=F(1)+\mathrm{P}[1<X \leq x]=3 / 4+0=3 / 4$

Thus

$$
F(x)=\left\{\begin{array}{ccc}
0 & \text { if } & x<0 \\
1 / 4 & \text { if } & 0 \leq x<1 \\
3 / 4 & \text { if } & 1 \leq x<2 \\
1 & \text { if } & 2 \leq x
\end{array}\right.
$$

The graph of the c.d.f. is:

In general, the graph of a discrete c.d.f. :

- is always non-decreasing
- is level between consecutive possible values (staircase appearance)
- has a finite discontinuity at each possible value (step height $=p(x)$)
- rises in steps from $F(x)=0$ to $F(x)=1$.

Drawing convention:

- filled circle $=$ point included in interval
- open circle $=$ point excluded from interval

Example 6.08 (the inverse of the preceding problem):
Find the probability mass function $p(x)$ given the cumulative distribution function

$$
F(x)=\left\{\begin{array}{cll}
0 & \text { if } & x<0 \\
1 / 4 & \text { if } & 0 \leq x<1 \\
3 / 4 & \text { if } & 1 \leq x<2 \\
1 & \text { if } & 2 \leq x
\end{array}\right.
$$

Steps (= possible values) are at $x=0,1,2$ only.
$p(0)=F(0)=1 / 4$
$p(\mathbf{1})=F(1)-F(0)=3 / 4-1 / 4=1 / 2$
$p(2)=F(2)-F(1)=1-3 / 4=1 / 4$
and we recover the original p.m.f.

In general,

$$
\begin{array}{|l}
\text { last kept - last excluded } \\
\hline P[a<X \leq b]=F(b)-F(a)
\end{array}
$$

If a, b and all possible values are integers, then

$$
P[a \leq X \leq b]=F(b)-F(a-1) \text { and } p(a)=P[X=a]=F(a)-F(a-1)
$$

Example 6.09

Find and sketch the c.d.f. for $X=$ (the score upon rolling a fair standard die once).
The p.m.f. is a uniform distribution

$$
p(x)=\frac{1}{6} \quad(x=1,2,3,4,5,6)
$$

Thus $F(x)$ increases from 0 to $1 / 6$ at $x=1$ and increases by steps of $1 / 6$ at each subsequent integer value until $x=6$. It follows easily that

$$
F(x)=\left\{\begin{array}{cc}
0 & (x<1) \\
1 & (x \geq 6) \\
\operatorname{INT}(x) / 6 & (\text { otherwise })
\end{array}\right.
$$

The graph of $F(x)$ has the classic staircase appearance of the cumulative distribution function of a discrete random quantity.

Expected value of a random quantity

Example 6.10:
The random quantity X is known to have the p.m.f.

x	10	11	12	13
$p(x)$.4	.3	.2	.1

If we measure values for X many times, what value do we expect to see on average?
Treat the values of $p(x)$ as point masses of probability:

The expected value $\mathrm{E}[X]$ (= population mean μ) is at the fulcrum (balance point) of the beam.

Taking moments about $x=10$:
$\sum p(x)(x-10)=.4 \times 0+.3 \times 1+.2 \times 2+.1 \times 3=1.0$
The fulcrum is at $x=10+1$

Therefore $\mu=\mathrm{E}[X]=\underline{\underline{11}}$

In general, for any random quantity X with a discrete probability mass function $p(x)$ and a set of possible values D, the population mean μ of X (and the expected value of X) is

$$
\mathrm{E}[X]=\mu_{X}=\sum_{x \in D} x \cdot p(x)
$$

Shortcut: If X is symmetric about $x=a$, then $\mathrm{E}[X]=a$

Example 6.11:

Let $X=$ the number of heads when a coin has been tossed twice. Find $\mathrm{E}[X]$.
Solution:
List the all the possible combinations.
\rightarrow the probability mass function of the distribution of X.

$$
p(x)= \begin{cases}1 / 4 & (x=0) \\ 1 / 2 & (x=1) \\ 1 / 4 & (x=2)\end{cases}
$$

$$
\begin{aligned}
E[X] & =0 \times 1 / 4+1 \times 1 / 2+2 \times 1 / 4 \\
& =0+1 / 2+1 / 2
\end{aligned}
$$

Therefore

$$
\mu=\underline{\underline{1}}
$$

Alternative solution:
Graph of $p(x)$:
 $p(x)$ is symmetric about $x=\mathbf{1}$.

Therefore, $\mathrm{E}[X]=\underline{\underline{\mathbf{1}}}$

The expected value of a function

Definition:

If the random quantity X has set of possible values D and p.m.f. $p(x)$, then the expected value of any function $h(X)$, denoted by $\mathrm{E}[h(X)]$, is computed by

$$
\mathrm{E}[h(X)]=\sum_{\text {all } x} h(x) \cdot p(x)
$$

$\mathrm{E}[h(X)]$ is computed in the same way that $\mathrm{E}[X]$ itself is, except that $h(x)$ is substituted in place of x.

Special case:

$$
h(x)=a x+b \Rightarrow \mathrm{E}[a X+b]=a \mathrm{E}[X]+b
$$

Proof:

$$
\begin{aligned}
\mathrm{E}[a X+b] & =\sum(a x+b) p(x) \\
& =\sum(a x) p(x)+\sum b p(x) \\
& =a \sum x p(x)+b \sum p(x) \\
& =a \mathrm{E}[X]+b
\end{aligned}
$$

Example 6.12:
$C=$ tomorrow's temperature high in ${ }^{\circ} \mathrm{C}$
$F=$ tomorrow's temperature high in ${ }^{\circ} \mathrm{F}$
Given $E[C]=10$, find $E[F]$.

$$
\begin{array}{rlrl}
F & =\frac{9}{5} C+32 \\
\Rightarrow & & \mathrm{E}[F] & =\frac{9}{5} \mathrm{E}[C]+32 \\
& =\frac{9}{5} \times 10+32 \\
\therefore & \mathrm{E}[F] & =\underline{\underline{\mathbf{5 0}}}
\end{array}
$$

The variance of X

The quantity usually employed to measure the spread in the values of a random quantity X is the population variance $\mathrm{V}[X]=\sigma^{2}=\frac{1}{N} \sum_{x}(x-\mu)^{2}$

Definition:

Let X have probability mass function $p(x)$ and expected value μ. Then

$$
\mathrm{V}[X]=\sum_{x}(x-\mu)^{2} p(x)=\mathrm{E}\left[(X-\mu)^{2}\right]
$$

The standard deviation of X is $\quad \sigma=\sqrt{\mathrm{V}[X]}$

Example 6.13:

Two different probability distributions [below] share the same mean $\mu=4$

If X has p.m.f. as shown in Figure (a)

x	3	4	5
$p(x)$.3	.4	.3

$\mu=4$ (by symmetry)
$\mathrm{V}[X]=(3-4)^{2} \times .3+(4-4)^{2} \times .4+(5-4)^{2} \times .3=.3+0+.3=\underline{0.6}$
and $\quad \sigma=\sqrt{ } 0.6 \approx 0.7746$

If X has p.m.f as shown in Figure (b)

x	1	2	6	8
$p(x)$.4	.1	.3	.2

$\mu=\mathrm{E}[X]=1 \times .4+2 \times .1+6 \times .3+8 \times .2=.4+.2+1.8+1.6=\underline{4}$
$\mathrm{V}[X]=(1-4)^{2} \times .4+(2-4)^{2} \times .1+(6-4)^{2} \times .3+(8-4)^{2} \times .2=3.6+0.4+1.2+3.2$
$=\underline{8.4}$
and $\quad \sigma=\sqrt{ } 8.4 \approx 2.898 \quad$ [Higher variance \leftrightarrow greater spread]

Example 6.14:
Let $X=$ number of heads when a coin has been tossed twice. Find $\mathrm{V}[X]$.
$\mathrm{V}[X]=\mathrm{E}\left[(X-\mu)^{2}\right]$
$=\sum(x-\mu)^{2} p(x)$
$=(0-1)^{2} \times 1 / 4+(1-1)^{2} \times 1 / 2+(2-1)^{2} \times 1 / 4$
$=1 / 4+0+1 / 4=\underline{\underline{0.5}}$

A shortcut formula for variance

$$
\mathrm{V}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

Proof: $\quad \sigma^{2}=\mathbf{E}\left[X^{2}\right]-\mu^{2}$

$$
\begin{aligned}
\mathrm{V}[X] & =\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left[X^{2}-2 \mu X+\mu^{2}\right] \\
& =\mathbf{E}\left[X^{2}\right]-2 \mu \mathrm{E}[X]+\mu^{2} \mathrm{E}[1]=\mathbf{E}\left[X^{2}\right]-2 \mu \mu+\mu^{2} \\
& =\mathrm{E}\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

Note: $\mathrm{E}[f(X)] \neq f(\mathrm{E}[X])$ unless $f(x)$ is linear and/or X is constant.
Example 6.14 (continued):
Let $X=$ number of heads when a coin has been tossed twice. Find $\mathrm{V}[X]$ using the shortcut formula.

$$
\begin{aligned}
\mathrm{E}\left[X^{2}\right] & =\sum x^{2} p(x) \\
& =0^{2} \times 1 / 4+1^{2} \times 1 / 2+2^{2} \times 1 / 4 \\
& =0+1 / 2+1=1.5 \\
\mathrm{~V}[X] \quad & =\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2} \\
& =1.5-1^{2} \\
\therefore \quad & \sigma^{2}=\underline{\underline{0.5}}
\end{aligned}
$$

The shortcut is more convenient when μ is not an integer.

Rules of variance

Example 6.15:
Do the distributions in the following two figures have the same variance or not?

YES
Example 6.16:
Do the distributions in the following two figures have the same variance or not?

NO

$$
\mathrm{V}[a X+b]=a^{2} \mathrm{~V}[X]
$$

Proof:

$$
\begin{aligned}
\mathbf{V}[a X+b] & =\mathbf{E}\left[((a X+b)-\mathbf{E}[a X+b])^{2}\right] \\
& =\mathbf{E}\left[((a X+b)-(a \mu+b))^{2}\right] \\
& =\mathbf{E}\left[(a X-a \mu)^{2}\right] \\
& =\mathbf{E}\left[a^{2}(X-\mu)^{2}\right] \\
& =a^{2} \mathbf{E}\left[(X-\mu)^{2}\right] \\
& =a^{2} \mathbf{V}[X]
\end{aligned}
$$

The addition of the constant b does not affect the variance, because the addition of b changes the location (and therefore mean value) but not the spread of values.

