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Example 8.01:  
 
  “Exact lifetime” is a continuous random quantity, but 
  “Measured lifetime to the nearest minute” is a discrete random quantity. 
 
In a bar chart, the height of each bar represents the probability.   Note that as the 
measurements become more precise, the number of intervals increases and the width, 
probability and height of each bar decrease.   The visual effect is misleading:   it appears 
that the total probability is decreasing to zero as the number of intervals increases to 
infinity. 
 
T = lifetime of a test wire in seconds. 
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Much more natural is the probability histogram, where the area of each bar represents 
the probability that the random quantity lies in the interval covered by the width of the 

ar.   The total area thus remains 1 even as the number of intervals → ∞. 

     

      
 

b
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In the probability histogram,  
 

==
Bar width

)(heightBar xp   “Probability density” 

 
As the bar width → 0, bar height → f(x) = the probability density function (p.d.f.) . 
 
The total area remains 1. 
 
Thus two conditions for a function f(x) of a continuous variable x to be a valid probability 
density function are: 
 
1) 

   ( ) 0f x x≥ ∀   [non-negative probability mass] 

 
 
2) 

   ( ) 1f x dx
∞

−∞

=∫   [coherence] 

 
From a discrete probability histogram,  
 P[a < X  ≤ b]  = the sum of the areas of the bars from x = a to x = b   
       (excluding x = a but including x = b), 
   = (c.d.f. at x = b) − (c.d.f. at x = a) 
and    P[X = a] = the area of the single bar centered on x = a.    
 
For a continuous probability distribution, it then follows that  
 

     ∫=<<
b

a
dxxfbXa )(]P[  

 
 
and   P[X = a] =  0    
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Example 8.02 
 
Verify that      is a legitimate probability density function and 

find  

(( ) 2 0 1f x x x= ≤ )≤

⎥⎦
⎤<<

2
1X⎢⎣

⎡ −
2
1P  . 

Note that, by default,  f (x) = 0  for all values of  x  not mentioned in the definition. 
 
On   0  ≤  x  ≤  1 ,   f (x)  =  2x  ≥  0 .    Elsewhere    f (x) = 0.       ∴ f (x)  ≥  0    ∀x . 
 

[ ] 100020)( 1
0

2
1

0 1

0

=++=++= ∫ ∫∫∫
∞

∞−

∞

∞−

xdxdxxdxdxxf   

 
OR:      
   
     
     
The total area under the graph of  f (x)  
 
= (area of the triangle, width 1,  
    height 2 )    
     
= ½ (1)(2) = 1 
 
Therefore    f (x)  is a valid p.d.f.   
 
     

⎥⎦
⎤

⎢⎣
⎡ <<−

2
1

2
1P X  = area under f (x)  

  between  x = − ½  and  x = ½   
        
= (area of triangle, width ½, height 1)  
 
= ½ (½) 1   =   ¼ . 
 
       
     
 
OR:            
          

[ ]
4
1

=+=+==⎥⎦
⎤

⎢⎣
⎡ <<− ∫∫∫

−−

2/1
0

2
2/1

0

0

2/1

2/1

2/1

020)(
2
1

2
1P xdxxdxdxxfX   
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The cumulative distribution function (c.d.f.) is defined by  
 
 

  ( ) P[ ] ( )
x

F x X x f t dt= ≤ =
−∞
∫   

 

   
 

 

   − 
 
 
 

 
 
 
 
 

   
 = 

 
                        
 
    [ ] ( ) ( )aFbFbXa −=<<P  
 
F (−∞) =  0  F (+∞) =  1  0  ≤  F (x)  ≤  1  for all x. 
 

The c.d.f. is a non-decreasing function of  x   and   ( ) 0)()( ≥= xfxF
dx
d    ∀x.  

[Many c.d.f.s look like this:] 
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Example 8.02 (continued)  
 
Find the cumulative distribution function for   ( )( ) 2 0 1f x x x= ≤ ≤   . 
[Note that  f (x)  is assumed to be zero for any x not mentioned in the definition] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graphical method: 
 
    x  <  0 ⇒ F (x) =  0 
 
 
0  ≤  x  ≤  1  ⇒ F (x) =   ½(x)(2x)  =  x2     
 
 
    x  > 1 ⇒ F (x) =    ½(1)(2)  =  1 
 
 

Calculus method: ∫
∞−

=
x

dttfxF )()(  

 

    x  <  0 ⇒ F (x)  = 0 0
x

dt
−∞

=∫  

 
0  ≤  x  ≤  1  ⇒ F (x) =  
 
 
 

    x  > 1 ⇒ F (x) = ( ) ( ) 2
1

1
0 1 0 1 1

x
f t dt dt F

−∞

+ = + = =∫ ∫  

( )

( )

0
2

0
0

2 2

0 2 0

0 0

x
x

dt t dt F t

x x
−∞

⎡ ⎤+ = + ⎣ ⎦

= + − =

∫ ∫
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( )
( )

( )
( )

2

0 0
0 1

1 1

x
F x x x

x

<⎧
⎪∴ = ≤⎨
⎪ >⎩

≤  

 
 
 
 

 
 
Note how the c.d.f. is a non-decreasing continuous function between  F = 0  and  F = 1. 
 
[ The sharp corner at  x = 1  on the c.d.f. corresponds to the finite discontinuity at  
x = 1  on the p.d.f. ] 
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Example 8.03     The Continuous Uniform Distribution 
 
Find the p.d.f. and the c.d.f.  
 

 
The probability density function is 
 

  ( ) ( )

( ) (

1

0 otherwise can omit this line
f x

a x b
b a

⎧ ≤ ≤⎪ −⎨
⎪ ←⎩

=
)
 

 
The cumulative distribution function is 
 

   .        When   x < a ,   F (x)   =   0  ∫ ∞−
=

x dttfxF )()(

 
 
When   x > b ,   F (x)   =  1   

When   a ≤ x ≤ b ,  F (x)   = x a
b a
−
−

  OR  
( ) ( ) 1

0

a

a

x

x

F x F a dt
b a

t x
b a b a

= +
−

−⎡ ⎤= + =⎢ ⎥
a

− −⎣ ⎦

∫
 

 
 

Therefore    ( )

( )

( )

( )

0

1

x a
x a a x bx
b a

x b

F

<
−

≤

⎧
⎪⎪= ⎨ ≤

−
>

⎪
⎪⎩
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Population Mean and Population Variance for Continuous Probability Distributions 
 
The discrete probability point masses   pi  are “smeared out” into infinitely many 
elementary masses   f (x) dx   covering infinitesimal intervals   dx .   The expression for 
the population mean (expected value) of the random variable  X  thus evolves from the 
discrete case  to the continuous equivalent  ∑

∀

=
i

ii xpX ]E[

 

∫
∞

∞−

== dxxfxX )(]E[μ  

 
The expression for the population variance is amended in a similar manner, from 

 to  ( )22 ][V ∑
∀

−==
i

ii xpX μσ

[ ] ( )2222 ][EE)()(][V XXdxxfxX −=−== ∫
∞

∞−

μσ  

 
Example 8.03 (continued)  
 
Find the population mean and variance for the continuous uniform distribution   U(a, b) . 
 

∫∫∫∫
∞

+⎟
⎠
⎞

⎜
⎝
⎛

−
+

∞−
==

∞

∞− b
dx

b

a
dx

ab
x

a
dxdxxfxX 010)(][E =  

 

    
( )

2 210 0
2 2

b

a

2x b a
b a b a

⎡ ⎤ −
+ + =⎢ ⎥− −⎣ ⎦

 

2
a bμ +

∴ =  

b

a

bax
ab

dx
ab

b

a

baxX
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +

−⎟
⎠
⎞

⎜
⎝
⎛

−
=+⎟

⎠
⎞

⎜
⎝
⎛

−⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +

−+= ∫
3

23
1101

2

2
0][V

8
2

)(

3)(
3
13

2

3

2
1

3
1

ab
abbaab

ab −
−

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛

−
=  

12

2a)(b −
=∴ 2σ    and   

12
(range)

=σ  . 



ENGI 3423  Continuous Probability Distributions Page 8-10 
 

 

 
 
[It is absolutely certain that the random quantity X  will lie less than two standard 
deviations away from the population mean.   The entire distribution lies within √3 
(≈ 1.732) standard deviations of the mean.] 
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The Exponential Distribution  
 
This continuous probability distribution often arises in the consideration of lifetimes or 
waiting times and is a close relative of the discrete Poisson probability distribution. 
 
The probability density function is  

    ( ) ( )
( )

0
0 0

xe x
f x

x

λλ −⎧ ≥⎪= ⎨
<⎪⎩

  

       
The cumulative distribution function is  
 

 F (x)   =   P[ X ≤  x ]   =   ∫
∞−

x
dttf )(    =  ( )

0
0 1 0

xt xe eλ λ− −⎡ ⎤ x+ − = − ≥⎣ ⎦  

 
 ⇒  P[ X  >  x ]   = ( )0xe xλ− ≥  
 

Also μ  =  E[X]  =   1
λ

   and σ  =  μ  

Reason: 
 

( )
0

0

0

1 1

x

x

x e dx

x e

λ

λ

μ λ

λ
λ λ

∞

∞

−

−

= + ⋅

⎡ ⎤− +
= ⎢ ⎥
⎢ ⎥⎣ ⎦

∫

=

 

 

V[X]  =  E[X2]  −  (E[X])2 
 

2 2

0

E xX x e dxλλ
∞

−⎡ ⎤ = ⋅ =⎣ ⎦ ∫ …  

OR 
2

2

0

2

1

1

xx e dλσ λ
λ

x

λ

∞
−⎛ ⎞= −⎜ ⎟

⎝ ⎠

= =

∫

…
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Example 8.04 
 
The random quantity   X   follows an exponential distribution with parameter   λ = 0.25 . 
Find   μ , σ   and   P[X > 4] . 
 
 

1 1
.25

σ
λ

μ = == = 4  

 
 
 
 
[ ] 1

4 4 1 .367879P 4 xe eX eλ − ×− −= = => = …  
 
 
     ≈  .368  
 
 
 
Note:  For any exponential distribution, P[X > μ] ≈ .368 . 
 
 
Example 8.05 
 
The waiting time   T   for the next customer follows an exponential distribution with a 
mean waiting time of five minutes.   Find the probability that the next customer waits for 
at most ten minutes. 
 
 
 

1 1 .2
5μ

λ = = =  

 
 
 
P[ T ≤ 10 ]   =   F (10)  =  [ ] 1

5 101 P 10 1T e− ×− > = −  
 
   21 1 .135335e−= − = − …  
 
 ∴ P[T < 10]  ≈  .865 
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Note:  
 
 P[ X > μ + 2σ ]   =   e−λ(μ + 2σ)   =   e−λ((1/λ)+(2/λ))  =  e−3  =  .049787 
 
 Therefore    P[ X > μ + 2σ ]   ≈   5.0%   for all exponential distributions. 
 

 Also   μ − σ   =  
λλ
11

−  = 0    ⇒    P[ X < μ − σ ]  =  0  =   P[ X < μ − 2σ ] 

 
 Therefore    P[ | X − μ |  > 2σ ]   ≈   5.0%  ,  a result similar to the normal 

distribution, except that all of the probability is in the upper tail only. 
 
 
For reference purposes, here are some other continuous probability density functions:  
 
Weibull distribution  (parameters  α  and  β;  textbook section 4.5, pages 163-166):   
 

 0,),;( )/(1 ≥= −− xexxf x αβα
αβ
αβα  

 
Gamma distribution  (parameters  α  and  β;  textbook section 4.4, pages 159-161): 
 

 0,
)(

1),;( /1 ≥
Γ

= −− xexxf x βα
α αβ

βα ,   where  Γ(α)  is the  

gamma function .  When  n  is a positive integer,  Γ(n) = (n−1)!  ∫
∞

−−

0

1 dxex xα

The gamma function is therefore a generalization of the factorial function. 
The exponential distribution is a special case of  
• the Weibull distribution when  α = 1.   (λ = 1/β ). 
• the gamma distribution when  α = 1.   (λ = 1/β ). 
However, neither of the Weibull and gamma distributions is a subset of the other.   
Another special case of the gamma distribution, with  α = ν /2  and  β = 2  
(where  ν = a natural number = “degrees of freedom”) is the Chi-squared distribution:  

 0,
)2/(2

1);( 2/1)2/(
2/

≥
Γ

= −− xexxf xν
ν ν

ν  

Another distribution is the beta distribution (pages 167-168):    

 
11

)()(
)(1),,,;(

−−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

ΓΓ
+Γ

−
=

βα

βα
βα

βα
AB
xB

AB
Ax

AB
BAxf  ,       A ≤ x ≤ B . 

 
 
If  Y = ln(X)  and  Y ~ N (μ, σ2), then  X  has a lognormal distribution (pages 166-167).    
 
Other p.d.f.s can be found in any good textbook on probability and statistics.
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The Gaussian or normal probability distribution is the single most important 
probability distribution.   It was first described by Abraham de Moivre in 1733 but bears 
the name of Karl Friedrich Gauss, who arrived at this distribution in 1809 when 
examining the distribution of errors in the measurement of the diameters of lunar craters.   
It arises naturally in many other situations (especially the Central Limit Theorem). 
 
If a continuous random quantity   X   has a normal distribution with population mean   μ  
and population variance  σ2 , then its 
probability density function is  
 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−

=
22

2

2
1)( σ

μ

πσ

x

exf  

 
which is positive for all  x . 
 
The cumulative distribution function for the 
normal distribution is     [Note that the points of inflection are at 

   ∫
∞−

=
x

dttfxF )()(    x  =  μ ±  σ ] 

which cannot be evaluated exactly in closed form except for certain special choices for  x. 
 
Notation: 
     X  ~  N(μ, σ2 ) 
 
μ = E[X] = population mean     σ2   =  V[X] =  population variance 
 
 
Adding a constant  c  to  X :    
 
moves the probability curve 
c  units to the right 
 
 
 
Influence of the variance  σ2  on the 
shape  of the normal probability curve: 
 
Low σ2    High σ2    
 
high peak  low peak 
 
most values  values more 
near  μ   spread out 
   (prop’l to σ) 
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Because there is no closed algebraic form for the c.d.f.   F(x) ,  the values are tabulated 
for one special choice of mean and variance:   μ = 0 ,  σ2 = 1 . 
 
Notation:  
 
 Z ~ N (0, 1)  is the  standard normal distribution,   
 
with  p.d.f. =  φ (z)   and   c.d.f.  =  Φ (z) . 
 
Conversion from   X  ~  N(μ, σ2)  to  Z ~ N (0, 1)   requires a linear shift of  μ  and a 
change of scale by a factor of  σ . 
 
 F (x)   =   P[X ≤ x]   = [ ]P X xμ μ− ≤ −    
 

  P X xμ μ
σ σ
− −⎡ ⎤= ≤⎢ ⎥⎣ ⎦

 

 
    =  P[Z < z] 
 
  where  Z ~ N(0, 1). 
 

Thus    [ ] ( ) ( )1221P zzxXx Φ−Φ=<<        where   
σ
μ−

=
x

z    . 

 
Symmetry   ⇒  
 
 
 
 
 
 
 
 
 

Φ(−z)       =        1  −  Φ(+z) 

 
 
A table of values of the standard normal distribution is on the inside front cover of the 
textbook (Devore, Table A.3).    
A more precise table is available as an Excel spreadsheet file, on the course web site, at  

"www.engr.mun.ca/~ggeorge/3423/demos/zTables.xls". 
and also in Chapter 15 of these notes. 
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[ ]

[ ]
[ ]
( )

(

P 500

500 454P
25

P 1.84

P 1.84

1.84

to 3 s.f.

X

Z

Z

Z

>

−⎡= >⎢⎣
= >

= ≤ −

= Φ −

= .0329 )

⎤
⎥⎦

For all normal distributions, 

 
 
[Approximate "rules of thumb":] 

[ ]
3
11P ≈>− σμX    [ ]

20
12P ≈>− σμX  

 

[ ]
300
13P <>− σμX  

 
 
Example 8.06 
 
The weights of boxes of nails are known to be normally distributed to an excellent 
approximation, with mean 454 grammes and standard deviation 25 grammes.   What 
proportion of boxes weighs more than 500 grammes? 
 
    X  ~  N(454, 25 2 ) 
 
 
 
 
 
         
 
          Part of Table A.3 (also page 15-03): 

 
z       .00    .01       .02          .03 .04     ... 
! 

−1.9     0.02872  0.02807  0.02743  0.02680  0.02619 ... 
−1.8     0.03593  0.03515  0.03438  0.03362  0.03288 ... 
−1.7     0.04457  0.04363  0.04272  0.04182  0.04093 ... 
−1.6     0.05480  0.05370  0.05262  0.05155  0.05050 ... 
−1.5     0.06681  0.06552  0.06426  0.06301  0.06178 ... 
    ! 

 
 
The proportion of boxes weighing > 500 g is 3.3% (to 2 s.f.) 
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Example 8.07 
 
Find the probability that a normally distributed random quantity is more than two and a 
half standard deviations away from its mean in either direction. 

 
 

 

( )[ ] ⎥⎦
⎤

⎢⎣
⎡ −<−>−=>− σμσμσμ

2
5

2
5P2

12P XORXX   

 
( )5

22 P symmetryX μ σ⎡ ⎤= × − < −⎣ ⎦  
 

5
22 P X μ

σ
−⎡ ⎤= × < −⎢ ⎥⎣ ⎦

 

 
( )5

22 P 2 2.50Z⎡ ⎤= × < − = Φ −⎣ ⎦  
 
  =  2 × .00621 
 
Therefore 
 

1
2P 2X μ σ⎡ − > ⎤ ≈⎣ ⎦ .0124  
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Example 8.08 
 
The strength of a set of steel bars is known to be normally distributed with a population 
mean of 5 kN  and a population variance of   (50 N)2 .   A client requires that at least 99% 
of all of these bars be stronger than 4,900 N.   Has this requirement been met? 
 
First convert μ to the same units as  σ .  
 
μ  =  5000 N  σ  =  50 N 
 

[ ] 4900 5000P 4900 P
50

X Z −⎡ ⎤> = >⎢ ⎥⎣ ⎦
 

 
  =  P[Z > −2]      =     P[Z < +2]   

 
 
 

= 
 
 
 
 

 
=  Ф(+2.00) 
 
=  .977 25  <  99% 
 
Therefore the requirement is NOT satisfied. 
 
Note that  Ф(z) = .99000   ⇒      z ≈ 2.33 
 
⇒      x  ≈  μ − 2.33 σ  
   =  5000  −  2.33×50 
   =  4883 
 
99% of all bars are stronger than 4,883 N (approximately). 
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Example 8.09  
 
Given that the random quantity  X  is normally distributed, find  c  such that  
 
    P[ X > c ] =  1% . 
 
(That is, find the 99th percentile.) 

      [ ] ⎥⎦
⎤

⎢⎣
⎡ −

>=>
σ
μcZcX PP   =  .01 .    

Notation:    zα   =   the   (1 − α)×100th  percentile of the standard normal distribution. 
 
[ ] ( )αα α zzZ −Φ==>P  

 
Here,   α = .01 . 
Φ(−z.01)   =   .01 
To find   z.01   we need to look in      
table A.3  for the value Φ = .01000 .  
             
  

Φ(−2.32)   =   .01017  
Φ(−2.33)   =   .00990 

⇒  z.01  =  2.33  (to 2 d.p.) 
 
Using linear interpolation (which will not be required in tests or the exam):  
 
.01000  is 17/27 of the way from  Φ(−2.32)  to  Φ(−2.33). 
 
Thus   −z.01   ≈   −2.32   +   (17/27) × (−0.01)   ≈   −2.326 .         
[The true value is −2.326, correct to three decimal places]. 
 

.01 2.326c zμ
σ
−

= ≈   ⇒  c   =   μ  +  z.01 σ    ≈   μ  +  2.326 σ . 

 
 
 
Note: By symmetry, the fiftieth percentile (z.50 = μ~  =  the median) is at   z = 0 . 
 Φ(0) = .5000    ⇒    μ~   =  μ  +  0 σ .  
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Example 8.10  
 
Find the quartiles for any normal distribution. 
 
     X  ~  N (μ, σ2)   
 
 
 
 
 
 
 
 
 
 
By symmetry,  
    xL   =   μ − a   and  
 
    xU   =   μ + a   where 
 
    a    =   SIQR    (the semi-interquartile range). 
 

 F(xU)  =  .75    ⇒    .75000Ux μ
σ
−⎛ ⎞Φ =⎜ ⎟

⎝ ⎠
  

 
But    Φ (0.67) =  .74857   and   Φ (0.68)  =  .75175 . 
 
⇒ (to 2 s.f.) SIQR = 0.67 σ  
 
Linear interpolation: 

( )

.75000 .748570.67 0.. 01

.75175 .74857

1430.67 0.01
318

0.6745

75000 −
+ ×

−

⎛ ⎞= Φ + ×⎜ ⎟

⎛
⎜

⎝ ⎠
= Φ

⎟
⎝ ⎠

= Φ
⎞

 

∴ xU − μ  =  0.6745 σ  
 
⇒ xU = μ  +  0.6745 σ  
 
By symmetry,  
 xL = μ  −  0.6745 σ 
and 
 SIQR  =  0.6745 σ . 
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