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Inferences Based on a Single Sample 
 
Some background material [additional non-examinable notes] on an introduction to 
statistical inference is available at  
"http://www.engr.mun.ca/~ggeorge/3423/handout/H10aInfer.doc". 
 
Confidence Intervals 

• Almost any parameter that we might wish to estimate has its set of possible values. 

• The point estimate, a single number, can be replaced by an entire interval of 
plausible values.   This interval is the confidence interval. 

 

• A confidence interval is an interval of plausible values for the parameter being 
estimated.   The degree of plausibility is specified by a confidence level, such as 
95% or 99%. 

 
Calculation of the classical confidence interval 

Suppose that the parameter of interest is a population mean  μ  and that  
• the population distribution is normal, and 
• the value of the population standard deviation  σ  is known. 
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Subtract  , Xμ : 

 / 2 / 2P n nX z X zα α
σ σμ⎡ ⎤− − < − < − +⎣ ⎦  

Multiply by (−1): 
 / 2 / 2P n nX z X zα α

σ σμ⎡ ⎤+ + > + > + −⎣ ⎦  

Rearrange the inequalities to obtain: 
 
The confidence interval estimator for  μ  (at a level of confidence of  (1 − α) ) is 
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The (1 − α) confidence interval estimator for  μ  is a random interval  
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,  

The probability is (1 − α) that the above random interval includes the true value of  μ. .  
(1 − α) of all random samples will produce an inequality, (the (1 − α) confidence 
interval estimate for μ) 
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that is true.    Note that the confidence interval estimate contains no random quantities at 
all!   The statement is either absolutely certain to be true or absolutely certain to be false, 
(depending on the values of  μ, σ, x , n and α). 
 

Interpretation of confidence interval [ = confidence interval estimate ] 

 
Only 5% of all 95% confidence interval estimates for μ  fail to include μ. 
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A concise expression for the C.I. (confidence interval estimate for μ) is  

n
zx σ

α
2

±  

 
 
A Bayesian view of interval estimation:  
 
If the only quantity among { μ, σ, x , n and α } that we don’t know is  μ, then represent 
the unknown  μ  by the random quantity  A.    Then 
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which is a valid probability statement about the random quantity  A   
(→   decision theory). 
 
 
A note about the standard normal distribution and the t distribution   
 
Let   Z  ~  N(0, 1)  (standard normal distribution), so that   
P[Z < z]  =  Φ(z)  (cumulative distribution function for the 
standard normal distribution). 
Then the (1 – α)×100th percentile of the standard normal 
distribution is  zα , which satisfies   P[Z > zα ]  =  α . 
It also follows that  1 – Φ(zα )  =  Φ(–zα )  =  α . 
         Φ(zα )  =  1 – α 
The t distribution with ν degrees of freedom is also a bell shaped curve, with a mean, 
median and mode at  t = 0, but with a greater variance than the standard normal 
distribution.   As the number of degrees of freedom increases, the t distribution 
approaches the z (standard normal) distribution.   The graphs of t1 and t5 are shown here, 
together with , which is indistinguishable to the eye from tν for ν above 30 or so. ( )zφ

 
Therefore , ,lim t t zα ν αν ∞→∞

= = α . 

To find the (1 – α)×100th percentile zα , use the final row in the table of critical values of 
the  t distribution (on page 15-02): ,z tα α ∞= . 
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The final row of the table on page 15-02 (the t tables) is  
    

 α    
ν 0.1 0.05 0.025 0.01 0.005

 
∞ 1.28155 1.64485 1.95996 2.32635 2.57583

 
Therefore P[Z > 1.645]  ≈  .05  or equivalently  z.05  ≈  1.645; 
  P[Z > 1.960]  ≈  .025  or equivalently  z.025  ≈  1.960;  etc. 
 
 
Example 10.01 
 
The rate of energy loss  X (watt) in a motor is known to be a normally distributed random 
quantity with standard deviation  σ = 3.0 W.   A random sample of 100 such motors 
produces a sample mean rate of energy loss of 58.3 W.   Find a 99% confidence interval 
estimate for the true mean rate of energy loss  μ.  
 
Endpoints of classical CI: 
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( )1 1 .99 .005
2 2
α

= − =  

z .005  =  t .005, ∞   =  2.57583 
 

Therefore the endpoints are  3.058.3 2.57583 58.3 0.772
100

⎛ ⎞± × = ±⎜ ⎟
⎝ ⎠

…  

⇒ 99% CI for μ is   57.53 ≤  μ  ≤  59.07 (W) (to 2 d.p.)     
 
[Reason for "≤" instead of "<":   The stated endpoints are just inside the exact 
interval.   The exact lower limit is 57.527..., which places 57.53 inside.   The answer 
could also be quoted correctly as "57.52 < μ < 59.08" or "57.53  ≤ μ < 59.08".] 
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Example 10.01 (continued)  
 
How large must  n  be for the width of the 99% confidence interval estimate for  μ  to be 
less than 1.0?  
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We require   w < 1    ⇒    15.45498  ≤  √n  
⇒    n ≥ 238.8... 
 
Therefore   nmin = 239 . 
 
Choice of sample size 
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The sample size is inversely related to the square of the desired width. 
 
 
Endpoints of a (1 − α) CI  for μ:  
 
(a) σ2 known:    
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(b) σ2 unknown,  n large: 
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(c) σ2 unknown,  n small: 
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When  n  is small,   X  must be [nearly] normal. 
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Example 10.02 
 
The lifetime  X  of a particular brand of filaments is known to be normally distributed.   A 
random sample of six filaments is tested to destruction and they are found to last for an 
average of 1,007 hours with a sample standard deviation of 6.2 hours.   
 
 (a) Find a 95% confidence interval estimate for the population mean  
  lifetime  μ . 
 (b) Is the evidence consistent with   μ ≠ 1000 ? 
 (c) Is the evidence consistent with   μ > 1000 ? 
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(a) A 95% CI for μ is  
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From the table on page 15-02,   t.025, 5  =  2.57... 

, 12
1007 2.57 2.531 1007 6.506

n

sx t
nα −

∴ ± ⋅ = ± × = ±… … …  

The 95% CI for μ is  
1000.49  <  μ  <  1013.51 (hours)  (2 d.p.) 

 
(b) μ = 1000  is not in the CI. 
Therefore yes, the evidence is consistent with  μ ≠ 1000 
 
(c) We need a one-sided CI (to test  μ > 1000): 
 
 t .05, 5  =  2.01505 
 

,
6.21007 2.015

6
sc x t
nα ν= − ⋅ = − ×…  

 = 1007  −  5.10... 
 
⇒ 95% CI is    μ > 1001.90 
 
[Expressed loosely, “we are 95% sure that μ > 1001.90”.] 
 
Yes, the CI is consistent with  μ > 1000. 
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Properties of a confidence interval 

 
If we think of the length of the confidence interval as specifying its precision, then the 
confidence level (or reliability) of the interval is inversely related to its precision. 

 

 
 
Estimation of Population Proportion  

When a random sample of size  n  is drawn from a population in which a proportion  p  of 
the items are “successes”, each item in the sample is a Bernoulli random quantity, with 
 P[“success”]  =  p  and   P[“failure”]  =   q   = 1  −  p 
Let   X  =  number of successes in the random sample, then the probability distribution of  
X  is   
    X  ~  bin(n, p) 
 
with  E[X]  =  np   and V[X]  =  npq = σ 2 
 
But, for   n, np, nq  all large,    bin(n, p) →  N(μ, σ 2) 
 
Therefore  

X  ~  N(np, npq)    (approximately) 
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The sample proportion    is a point estimator for the population proportion  p.  P̂
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Therefore, the 100(1- α)% confidence interval estimator for  p  is 

 

 

 

 

and the 100(1- α)% confidence interval estimate for  p  is 

 

  

 

Note also the more precise confidence interval quoted in the course text,  
(Devore, sixth edition, section 7.2, page 266): 
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Example 10.03 
From a random sample of one thousand silicon wafers, 750 pass a quality control test.    
Find a 99% confidence interval estimate for p (the true proportion of wafers in the 
population that are good). 
 
n = 1000 and x = 750 

4
3

1000
750ˆ ===⇒

n
xp  

4
1ˆ1ˆ =−=⇒ pq  

 
α/2  =  .005 

z.005  =  t.005, ∞  ≈  2.576 

Endpoints of the C.I.: 
 
 
 
 

1000
25.75.576.275.

ˆˆˆ 2
×

±=±
n
qpzp α

=  .75  ±  .035 27... 
Therefore the 99% confidence interval estimate for  p  is 
 

71.5%  ≤  p  ≤  78.5% 
 
correct to three significant figures. 
 
Using the more precise version of the confidence interval yields  

2 2 2 2
/ 2 / 2

/ 2 2 6

2 2
/ 2

ˆ ˆ 2.576 .75 .25 2.576ˆ .75 2.576
2 4 2000 1000 4 10

2.57611
1000

.7483519 .035195

z zpqp z
n n n

z
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α
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×
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×=
++

= ± ⇒ 71.3% < < 78.4%… … p

 

[With a sample size of 1000 and the observed numbers of successes and failures both 
exceeding 100 by a large margin, it is no surprise that the two versions of the 
classical confidence interval for p agree to approximately 1%.] 
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(1−α)×100% Bayesian interval for  μ  
 
Suppose that previous evidence leads us to believe that  μ = μ o .   The strength of this 
belief is represented by the variance σ o

2 (lower variance corresponds to stronger belief).    
We wish to update that estimate after a random sample of size  n  has been examined.   
Assume that  n >> 30  (so that the Central Limit Theorem will apply).  
 
Prior distribution:  

( )2~ N ,X μ σD D  
New evidence:  
 
Sample size = n  
Sample mean = x  
Sample standard deviation = s  
 
Calculate  

d

d

w x w
w w
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D
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dw w
σ ∗ =

+ D
 

where  wd, wo are the weights of the data and original information respectively, given by 

   22
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 [weights ~ precision] 

 
Posterior distribution:   

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ∗∗ 2

, N~ σμX  

→ (1−α)×100% Bayesian interval for  μ :  
 

∗∗ ±= σμμ α 2/z  
 
Compare with the classical (1−α)×100% confidence interval for  μ : 
 

n
zxn

n
szx σμμ αα 2/2/ or)30( ±=>>±=  

 
In many applications, the Bayesian interval is often narrower than the classical 
confidence interval, because the Bayesian interval incorporates more information 
(previous evidence or belief about the true value of μ ). 
 
[Note: it is easy to show that as  σ o

2 → ∞  (or if x = μ o  then),  μ* =  x   
 and that as  σ o

2 → ∞ ,    σ* 2 → s 2 / n , which are the classical expressions.] 
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Examples of Bayesian Confidence Intervals  
 
These examples are modifications of the previous examples of classical confidence 
intervals for μ. 
 
Example 10.04 
 
The rate of energy loss  X (watt) in a motor is known to be a normally distributed random 
quantity and prior experience suggests that the mean is  μ  = 60 W with standard 
deviation  σ = 3.0 W.   A random sample of 100 such motors produces a sample mean 
rate of energy loss of 58.3 W with sample standard deviation 2.8 W.   Find a 99% 
confidence interval estimate for the true mean rate of energy loss  μ. 
 

( )2
2

1 1Prior: ~ N 60, 3 Weight:
9

X w
σ

= =D
D

 

( ) 22

1 100Data: 58.3, 2.8, 100 Weight:
2.8d s
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x s n w= = = = =  

( )2

2
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92.8

1 1 9 7.84* 0.077
900 7.84dw w

σ ×
⇒ = = = =

+ + +D

…  

100 1
7.84 9

100 1
7.84 9

58.3 60 900 58.3 7.84 60and * 58.314
900 7.84

d

d

w x w
w w

μμ
× + ×+ × + ×

= = = =
+ + +

D D

D

…

The 99% CI for  μ  is  

.005* * 58.3 2.57583 0.077 58.3 0.718zμ σ± = ± = ±… … … …  
=  [57.60, 59.03]  (2 d.p.) 

 
Compare this with the classical CI:   [57.53, 59.07] . 
 
[The Bayesian CI is more precise, due to good use of prior information.] 
 
[Note that the true value of σ 2 is not known.   Therefore the true number of degrees 
of freedom is between n−1 = 99 and infinity.    
However, t.005,99 = 2.626 and  z.005  =  2.575..., which shifts the boundaries of the CI by 
less than 0.015. 
The error caused in replacing t by the approximation z is therefore negligible.] 
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Example 10.05 

The lifetime  X  of a particular brand of filaments is known to be normally distributed.   
Prior experience suggests that  μ  = 1000  and  σ = 6.0.   A random sample of six 
filaments is tested to destruction and they are found to last for an average of 1,007 hours 
with a sample standard deviation of 6.2 hours.   
 
 (a) Find a 95% confidence interval estimate for the population mean  
  lifetime  μ . 
 (b) Is the evidence consistent with   μ ≠ 1000 ? 
(a) 2 21000, 6 , 1007, 6.2, 6x s nμ σ= = = =D D =  

( )
( )2

2 6 1
38.44 36

1 6 1, * 5.438
36 6.2

dw w σ⇒ = = ⇒ = =
+D …  

 
6 1

38.44 36
6 1

38.44 36

1007 1000
* 1005.942μ

× + ×
= =

+
…  

 The 95%CI is  
 [ ) ( ).025, 5* * 1005.9 2.57 5.4 2 d.p.tμ σ± = ± × = 999.95, 1011.94… … …  

 
[Note that the true number of degrees of freedom is between (n − 1)  and ∞ , because  
 of the presence of the prior information. 
 The CI quoted here is therefore conservative (wider than the true interval).] 
 
 
(b) μ = 1000  is inside the CI; therefore NO. 
 
[This is the opposite conclusion from that drawn from the classical confidence 
interval for  μ:   (1000.49, 1013.51).   A fairly strong prior belief in  μ = 1000 , 
together with a small sample size, has dragged the Bayesian CI down closer to 
μ = 1000; close enough to bring μ = 1000 inside the CI.] 
 
 
See also  www.engr.mun.ca/~gggeorge/3423/demos/BayesCI.xls . 
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Example 10.A1   
 
Suppose that we have 10,000 urns of the following types: 
Urn type  θ1 :  8,000 urns, each with 4 red (R) and 6 non-red ( R ) balls 
and urn type  θ2 :   2,000 urns, each with 9R and 1 R  
An urn of one of these two types is placed in front of us.   We have paid a fee to 
withdraw two balls from the mystery urn in order to improve our chances of guessing 
correctly which type of urn it is.  
 
The consequences of our guess are included in a choice between two contracts: 
 α1 :   gain of +$28 if the urn is θ1, gain of −$32 if the urn is θ2. 
and 
 α2 :   gain of −$17 if the urn is θ1, gain of +$88 if the urn is θ2. 
 
Prior: 
Before any balls are withdrawn, our best guess at the probability that the urn is of type θ1 

is   P[θ1]  =  8000 4 .8000
10000 5

= =  

Posterior:   
After the two balls are withdrawn, our best guess at the probability that the urn is of type 
θ1 is updated as follows: 
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Note that events  R1 and R2  are not independent, yet they are exchangeable;  
 1 2 1 2R R R R≈  
The data allow us to update our assessment of the probabilities of  θ1 and θ2. 
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P P 40P 1
40P P P

R R R R
R R

R R R R R R
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⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎡ ⎤ = = = =⎣ ⎦ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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 Data  then         Decision      E[gain]   Actual gain 
   if         P[θ1]  →           choose 
 
 RR      2/5  = .4000 α2        $46 −$17 or +$88 
      R R wR R     32/35 ≈ .9143 α1     $22.86 +$28 or −$32 
           RR        1  α1        $28 +$28 (certain) 
 
The expected gains are calculated from the posterior probabilities:    
 
Data = RR  ⇒   E[Gain]  =  .4×(−$17)  +  .6×(+$88)  =  −$6.80  +  $52.80  =  +$46.00  
 
Data =  R R or R R  ⇒   E[Gain]  =  32/35×(+$28)  +  3/35×−($32)  ≈  +$22.86  
 
These revised probabilities incorporate both information from the data (the two balls 
drawn from the urn) and the prior information (our previous belief that  P[θ1]  =  4/5). 
 
Now let us examine what happens if we have no preconceptions as to the relative 
numbers of urns of each type.   We still know that each urn of type θ1 contains 4 red and 
6 non-red balls and that each urn of type θ2 contains 9 red and 1 non-red balls.   However, 
we do not know how many of each type of urn there may be.   We may express this lack 
of prior information (an indifference between θ1 and θ2) by considering each type to be 
equally likely before the two balls are drawn.   Therefore the prior probability is now  
  P[θ1]  =  1/2 . 
 
The tree diagram changes to  
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But  P[θ1] = P[θ2]  has the following consequences:  
P[θ1R1R2]  =  P[R1R2|θ1] P[θ1]  =  P[R1R2|θ1] / 2,  
P[θ2R1R2]  =  P[R1R2|θ2] P[θ2]  =  P[R1R2|θ2] / 2,   so that  

[ ]
[ ] [ ]

1 2 11 1 2
1 1 2

1 1 2 2 1 2 1 2 1 1 2 2

PP
P

P P P P
R RR R

R R
R R R R R R R R

θθ
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θ θ θ θ
⎡ ⎤⎣ ⎦⎡ ⎤ = =⎣ ⎦ + ⎡ ⎤ + ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

(and similarly for the other three updated probabilities for θ1). 
Therefore the updated probabilities are: 

1
2

1 1 2P R Rθ⎡ ⎤ =⎣ ⎦
34

10 9

1
2

× ×
34 1

10 9 2× × +

34
10 9
3 9 849 8

10 9 10 910 9

12 1
84 7

×
= = =

× + ×× ×
 

64
10 9

1 1 2 1 1 2 6 94 1
10 9 10 9

24P P
33

R R R Rθ θ
×⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ × + ×

=  

6 5
10 9

1 1 2 6 5 01
10 9 10 9

30P 1
30

R Rθ
×⎡ ⎤ = =⎣ ⎦ × + ×

=  

 
Bayesian inference generally incorporates prior information whereas classical inference 
uses information only from the data.   In the special case of no prior information, the two 
methods often produce the same prediction. 
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[Not examinable:] 
 
Inference on population proportion  p : 
 
Let  p = proportion of “successes” in the population. 
 
Draw a random sample, size n (with replacement and/or from a huge population).  
 
Let  X = the number of successes in the sample 
Let  P = (a random quantity representing the unknown p) 
then   P[X=x | P=p]   =   b(x; n, p)  (binomial) 
 
Let our prior belief about  p  be the probability mass function  P[P=p]   =  fo(p)  
 
Then the posterior (updated) distribution, using both our prior belief and the result from 
the random sample, is 

[ ] ( ) ( )
[ ]

P
P

P
P p X x

P p X x
X x

= ∧ =⎡ ⎤⎣ ⎦= = =
=

 

[ ] [ ]
[ ] [ ]

( )P P
Bayes

P P
p

X x P p P p

X x P p P p

= = ⋅ =
=

= = ⋅ =∑
 

=   fU(p)  
 
Therefore  

 ( )
( ) ( )

( ) ( )

; ,

; ,
U

p

b x n p f p
f p

b x n p f p

⋅
=

⋅∑
 

As  P  becomes continuous, the probability point mass  fo(p)  spreads out over an 
infinitesimal interval  dp, with mass  fo(p) dp,  where fo(p)   is now the probability density 
function. 

( ) ( ) ( )
( ) ( )

( ) ( )
1

0

; ,
P |

; ,
U

b x n p f p dp
f p dp p P p dp X x

b x n p f p dp

⋅
= ≤ < + = =⎡ ⎤⎣ ⎦

⋅∫
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Example 10.A2 
 
Suppose that we have a complete lack of prior knowledge of the true value of p, so that 
we consider any one value of  p  to be just as likely as any other in the interval  0 ≤ p ≤ 1.  
Then    fo(p)   ~  U(0, 1)   (continuous uniform distribution), that is  

  ( ) ( )
( )

1 0 1
0 otherwise

p
f p

≤ ≤⎧
= ⎨
⎩

⇒ b(x; n, p)  fo(p)  =  nCx px (1−p) n − x       (0 ≤ p ≤ 1)  

( ) ( ) ( ) ( )
( )
( )

1 1

0 0

! !! 1b ; , 1
! ! 1 !

n xn x
x

x n xnx n p f p dp C p p dp
x n x n n

− −
⇒ ⋅ = − = ⋅

1
=

− + +∫ ∫  

Upon observing  x successes in n trials, our assessment of the value of  p is updated to  

( ) ( ) ( ) ( )U 1 1 0n xn x
xf p n C p p p 1−= + − ≤ ≤  

The population mean  μP  =  E[P]  for this distribution (which is also our point estimate 
for the unknown  p) is  

( ) ( )
( ) ( ) ( )

( )
( ) ( )

( )
1 1

0

1 ! 1 ! 1 ! !
1

! ! ! ! 2 !
n xx

U
n n n x n x

p f p dp p p dp
x n x x n x n

+∞ −+

−∞

+ + +
⋅ = ⋅ − = ⋅ =

− − +∫ ∫
+1
+ 2

x
n

−

The most likely value of  p (the mode) is found by solving  

 ( )( ) 0 for modeU
d f p p
dp

= ⇒
x
n

=  

(which is the classical point estimate for the unknown  p). 
 
The Bayesian and classical point estimates for  p  therefore disagree,  
(except when  x = n / 2). 
 
If a random sample of size  n = 10 is drawn, then the updated p.d.f. for p is:  
 
     Observed value of  x: fU(p)  E[P]   mode 
 
  0         11 (1−p)10   1/12     0 
  1      110 p (1−p)9   2/12  1/10 
  2      495 p2 (1−p)8   3/12  2/10 
  3    1320 p3 (1−p)7   4/12  3/10 
  4    2310 p4 (1−p)6   5/12  4/10 
  5    2772 p5 (1−p)5   6/12    = 5/10 
  6    2310 p6 (1−p)4   7/12  6/10 
  7    1320 p7 (1−p)3   8/12  7/10 
  8      495 p8 (1−p)2   9/12  8/10 
  9      110 p9 (1−p)         10/12  9/10 
           10        11 p10               11/12     1 
 
Similar tables can be constructed for any other sample size  n.  
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Using integration by parts, the following recurrence relation is established: 

( ) ( ), , , 1
b nm

a
I m n a b p p dp= −∫

( ) ( )
11

1, 1, ,
1 1

bnm

a

p p m I m n a b
n n

+⎡ ⎤− −
= + ⋅ −⎢ ⎥

+ +⎢ ⎥⎣ ⎦
+  

When  m, n  are both positive integers, this leads to  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

0

1

0

! !, , , 1 1
! 1 !

! !1 1
! 1 !

m
n km k

k

m
n km k

k

m nI m n a b a a a
m k n k

m nb b
m k n k

+ −

=

+ −

=

= − −
− + +

− − −
− + +

∑

∑ b
 

Special cases:  

( ) ( ) ( ) ( ) ( ) ( )1

0

! ! ! !, ,0, 1 1
1 ! ! 1 !

m
n km k

k

m n m nI m n b b b b
m n m k n k

+ −

=

= − −
+ + − + +∑ −  

( ) ( ) ( ) (
1

0

! !, ,0,1 1 1, 1
1 !

nmm nI m n p p dp B m n
m n

= = − = +
+ + ∫ )+    [beta function] 

Also  

( ) ( ) ( )1 11 1
0, , ,

1

n na b
I n a b

n

+ +− − −
=

+
 

( )
1 1

,0, ,
1

m mb aI m a b
m

+ +−
=

+
 

With ( ) ( ) ( ) ( ) ( ) ( )UU 0,1 1 1 0 1 ,n xn x
xf p f p n C p p p−= → = + − ≤ ≤

,

 

the updated cumulative distribution function is  

( ) ( ) ( ) ( )1 , , 0
p n

U U xF p f t dt n C I x n x p
−∞

= = + −∫  

( ) ( ) ( )1 1

0
1 1 1n x

U

x x kn k
k

k
F p p C p p+ − −+

=
⇒ = − − −∑  

From the c.d.f., the boundaries of any desired confidence intervals on p can be calculated. 
 
For example, with n = 25, x = 20 and using the QuickBasic program  
"www.engr.mun.ca/~ggeorge/3423/demos/BayeCIp2.bas", 
the following results were reported: 
 
Mode of  p = .800000    Mean of  p = .777778     Median of  p = .784706 
Lower quartile = .727898 ,      Upper quartile = .835014 
 
The Bayesian 95% confidence interval for  p  is 
      (.606506, .910263) 
The Bayesian 99% confidence interval for  p  is 
      (.545044, .936493) 
 
The Classical 95% confidence interval for  p  is 
      (.608691, .911394) 
The Classical 99% confidence interval for  p  is 
      (.543389, .9307 
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