ENGI 4421 Term Test 1 2019 June 13

1.	Ten observations of completion times <i>t</i> (in minutes) for a testing procedure are listed here, in ascending order.			
	13 42 46 51 54 58 59 61 65 70			
(a)	Find the upper quartile Q_3 and show your calculations.	[4]		
(b)	Determine whether the minimum observation (13 min) is an extreme outlier, a mild outlier, or not an outlier at all.	[6]		
	You may quote the value of the lower quartile $Q_1 = 45$ min.			

2.	Given the following information for events A, B, C		
	P[A] = .35, $P[B] = .30$, $P[C] = .40$,		
	$P[A \cap B] = .20$, $P[B \cap C] = .12$, $P[C \cap A] = .15$,		
	$P[A \cap B \cap C] = .042$		
(a)	Are events <i>B</i> , <i>C</i> independent? Why or why not?		
(h)	Are events A B C independent? Why or why not?		

(b)	Are events A, B, C independent? Why or why not?	[3]
(c)	Find the probability that none of events A, B, C occur.	[4]
(d)	Find the odds that event <i>A</i> occurs, given that event <i>C</i> does <i>not</i> occur.	[6]

3. A discrete random quantity X has a probability mass function defined by

$$p(x) = k(x-1)^2$$
 (x = 2, 3, 4)

(a)	Show that $k = \frac{1}{14}$	in order for $p(x)$ to be a valid probability mass function.	[3]
(b)	Find the mode.		[2]

- [2] (c) Find the cumulative distribution function $F(x) = P[X \le x]$ [3]
- (d) Find E[X] (as a fraction in its lowest terms). [3] [4]
- (e) Find V[X] (as a fraction in its lowest terms).

BONUS QUESTION

- Prove that events \tilde{A} , \tilde{B} are independent if and only if events A, B are independent. 4. [+4]
- Back to the index of questions Ð

On to the solutions @

[2]