ENGI 4421

Term Test 2

2019 July 11

1. The lengths X of a type of girder are known to follow a normal distribution with a population mean of 3.100 m and a population standard deviation of 0.005 m .
(a) Find the probability that the next girder has a length less than 3.095 m .
(b) Find the probability that the difference D between the lengths of the next two girders is greater than 0.005 m . Do not use interpolation. State any assumption that you need to make. Quote your final answer to two significant figures.
[Tables of the standard normal cdf were provided with the question paper.]
2. A pair of random quantities X, Y has the joint probability mass function $p(x, y)$ given by the table below.

$p(x, y)$	y				
	-1	0	1		
	-1	.10	.04	.06	
	0	.15	.01	.14	
		.25	.15	.10	

(a) Complete the table to display the marginal probability functions $p_{X}(x)$ and $p_{Y}(y)$.
(b) Find $\mathrm{P}[Y<0 \mid X>0]$ (the probability that Y is negative given that X is positive).
(c) Calculate the covariance of X and $Y, \operatorname{Cov}[X, Y]$.
(d) Are the random quantities X, Y independent? Why or why not?
3. The distance x from an observer to the top of a tree is related to the angle θ
(between that line of sight and the horizontal), and the known distance $b=40 \mathrm{~m}$ (between the observer and the base of the tree), by

$$
x=b \sec \theta
$$

The measured angle is reported to be $\theta=(28.41 \pm 0.12)^{\circ}$.
Find the uncertainty in the distance x correct to two decimal places.
4. The time T from installation to failure of a particular type of valve in a highvolume pipe junction follows an exponential distribution and is independent of the times to failure of all other valves. Upon failure a valve is replaced immediately with a new valve whose lifetime follows the same probability distribution. The mean time to failure μ is known to be 168 hours.
(a) Write down the p.d.f. (probability density function) for T.
(b) Find $\mathrm{P}[T<100]$.
(c) Find the time $\tilde{\mu}_{T}$ (correct to the nearest hour) before which half of all valves fail.
(d) The number N of these valves that fail in 2,184 hours (one quarter of a year) follows a Poisson distribution. Show that $\mathrm{E}[N]=13$.
(e) Find the probability that at least ten valves fail during the quarter.
[A table of the Poisson pmf and cdf for $\mu=13$ was provided with the question paper.]

BONUS QUESTION

5. For the joint probability density function

$$
f(x, y)=k(a x+b y), \quad(0 \leq x \leq 1 \text { and } 0 \leq y \leq 1)
$$

where a, b are positive constants, find the value of k (in terms of a and b) and determine whether or not the random quantities X, Y are independent.

[^0]
[^0]: (Back to the index of questions

