ENGI 4421

Term Test 2
2020 July 09

1. The joint probability mass function $p(x, y)$ of two Bernoulli random quantities X, Y is displayed in this table.

$p(x, y)$				
		y		
		0	1	
x	0	0.3	0.1	
	1	0.5	0.1	

(a) Find the covariance of X, Y.
(b) Are X, Y independent?
2. A truck contains 18 good sections of culvert lining and 2 defective sections.

A random sample of 4 sections is taken from the truck.
Let $X=$ the number of defective sections in the random sample.
(a) Is the probability distribution of X exactly binomial, approximately binomial or not binomial at all?
(b) Find the probability that there are at least two defective sections in the sample.
3. The breaking load W of a cable from a production line is known to be a normally distributed random quantity with mean $\mu=500.0 \mathrm{~N}$ and standard deviation $\sigma=5.0 \mathrm{~N}$. The breaking load of each cable is independent of the breaking loads of all other cables manufactured on this production line. Find the probability that
(a) the next cable has a breaking load less than 492.0 N .
(b) the average breaking load \bar{W} of the next 25 cables is more than 501.0 N .
[You may assume that \bar{W} is normally distributed.]
(c) the difference between the breaking loads of the next two cables exceeds 10.0 N .

Note: You do not need to use linear interpolation in this question.
The table of the standard normal c.d.f. was provided with the question paper.
4. A continuous random quantity X has the probability density function (pdf)

$$
f(x)=\frac{18}{(x+2)^{3}} \quad(x>1)
$$

(a) Show that the cumulative distribution function (cdf) is

$$
F(x)=\left\{\begin{array}{cc}
0 & (x \leq 1) \\
1-\frac{9}{(x+2)^{2}} & (x>1)
\end{array}\right.
$$

(b) Show that $f(x)$ is a valid probability density function.
(c) Find the median value $\tilde{\mu}$ of X.
(d) Find the population mean value $\mu=\mathrm{E}[X]$.
5. BONUS QUESTION

The rate $Q\left(\mathrm{~cm}^{3} / \mathrm{s}\right)$ at which water flows out from a pipe of circular cross section, radius $r(\mathrm{~cm})$, when the bulk speed of the water flow inside the pipe is $v(\mathrm{~cm} / \mathrm{s})$, is

$$
Q=\pi r^{2} v
$$

Find the uncertainty of the estimate of the bulk speed of the water flow v, given the estimates $Q=(824.7 \pm 20.0) \mathrm{cm}^{3} / \mathrm{s}$ and $r=(4.9 \pm 0.1) \mathrm{cm}$. You may assume independence between Q and r.

