Probability

Decision trees

Example 2.01

Example 2.02
(platform for oil \& gas development)

\mathbf{C}
\mathbf{O}
\mathbf{N}
S
\mathbf{E}
\mathbf{Q}
\mathbf{U}
\mathbf{E}
\mathbf{N}
\mathbf{C}
\mathbf{E}
S

Example 2.03
Investment

Fair bet

Example 2.04
A client gives a $\$ 100$ reward iff (if and only if) the contractor's circuit board passes a reliability test. The contractor must pay a non-refundable deposit of $\$ 100 p$ with the bid. What is a fair price for the deposit?

Let $\quad E=$ (the event that the circuit board passes the test)
and $\quad \tilde{E}=\sim E=$ not $-E=$ (the event that the circuit board fails the test)
then $\quad \tilde{E}$ is known as the complementary event to E.
Let $E=1$ represent " E is true" and $E=0$ represent " E is false" then

$$
E+\tilde{E}=
$$

Decision tree:

$$
p=\frac{\text { deposit }}{\text { reward }}
$$

If the contract is taken (= upper branches of decision tree):
(Gain if $\tilde{E})=$
$($ Gain if $E)=$
Therefore Gain =
where E is random, (= 0 or $1 ; E$ is a Bernoulli random quantity).
If the contract is not taken (= lowest branch of decision tree):
Gain $\equiv 0$

A fair bet \Rightarrow indifference between decisions

Balance of Judgement:

The bet is fair iff gain and loss balance:
Taking moments: $100(1-p) \times \mathrm{P}[E]=100 p \times \mathrm{P}[\tilde{E}]$
But $\widetilde{E}=1-E$ and $\mathrm{P}[\widetilde{E}]=1-\mathrm{P}[E]$
$\Rightarrow(1-p+p) \times \mathrm{P}[E]=p$
Therefore the fair price for the bid deposit occurs when $\quad p=\mathrm{P}[E]$ and the fair price is $($ deposit $)=($ contract reward $) \times \mathrm{P}[E]$.

Example 2.04 (continued)
Suppose that past experience suggests that E occurs 24% of the time.
Then we estimate that $\mathrm{P}[E]=.24$ and the fair bid is $100 \times .24=\underline{\mathbf{\$ 2 4}}$.

Odds

Let s be the reward at stake in the contract (= $\$ 100$ in example 2.04).
The odds on E occurring are the ratio r, where
$r=\frac{\operatorname{loss} \text { if } \tilde{E}}{\text { gain if } E}=\frac{s p}{s(1-p)}=\frac{P[E]}{P[\tilde{E}]}=\frac{p}{\tilde{p}}=\frac{p}{1-p} \Rightarrow P[E]=\frac{r}{r+1}$

In example 2.04,
$r=$
"Even odds" \Rightarrow
"Odds on" when "Odds against" when

Coherence:

Suppose that no more than one of the events $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ can occur. Then the events are incompatible (= mutually exclusive).

If the events $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ are such that they exhaust all possibilities, (so that at least one of them must occur), then the events are exhaustive.

If the events $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ are both incompatible and exhaustive, (so that exactly one of them must occur), then they form a partition, and

$$
E_{1}+E_{2}+\ldots+E_{n}=
$$

A set of probabilities $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ for a partition $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ is coherent if only if
[See the bonus question in Problem Set 2 for an exploration of this concept of coherence.]

Notation:
$A \wedge B=$ events A and B both occur; $\quad A \wedge B=A \times B=A B$
$A \vee B=$ event A or B (or both) occurs;
(but $A \vee B \neq A+B$ unless A, B are incompatible)

Some definitions:
Experiment $=$ process leading to a single outcome
Sample point (= simple event) = one possible outcome (which precludes all other outcomes)

Event $E=$ set of related sample points
Possibility Space $=$ universal set $=$ Sample Space $S=$

By the definition of S, any event E is a subset of $S: \quad E \subseteq S$
Classical definition of probability (when sample points are equally likely):

$$
\mathrm{P}[E]=\frac{n(E)}{n(S)},
$$

where $n(E)=$ the number of [equally likely] sample points inside the event E.
More generally, the probability of an event E can be calculated as the sum of the probabilities of all of the sample points included in that event:

$$
\mathrm{P}[\boldsymbol{E}]=\Sigma \mathrm{P}[X]
$$

(summed over all sample points X in E.)

Empirical definition of probability:

$$
\mathrm{P}[E]=
$$

Example 2.05 (illustrating the evolution of relative frequency with an ever increasing number of trials):
http://www.engr.mun.ca/~ggeorge/4421/demos/Cointoss.xlsx
or import the following macro into a MINITAB session:
http://www.engr.mun.ca/~ggeorge/4421/demos/Coins.mac

Example 2.06: rolling a standard fair die. The sample space is

$$
\begin{aligned}
S & =\{1,2,3,4,5,6\} \\
n(S) & =6 \quad \text { (the sample points are equally likely) } \\
P[1] & =1 / 6=\mathrm{P}[2]=\mathrm{P}[3]=\ldots
\end{aligned}
$$

$$
\mathrm{P}[S]=
$$

The empty set (= null set) $=\boldsymbol{\varnothing}=\{ \}$

$$
\mathrm{P}[\boldsymbol{\square}]=
$$

The complement of a set A is A^{\prime} (or $\tilde{A}, A^{*}, A^{c}, \operatorname{NOT} A, \sim A, \bar{A}$).

$$
n(\sim A)=n(S)-n(A) \text { and }
$$

$$
\mathrm{P}[\sim A]=1-\mathrm{P}[A]
$$

The union $A \cup B=(A$ OR $B)=A \vee B$

The intersection $A \cap B=(A$ AND $B)=A \wedge B=A \times B=A B$

For any set or event \mathbf{E} :

$\boldsymbol{\square} \cup \mathbf{E}=$	$\mathbf{E} \cap \sim \mathbf{E}=$
$\boldsymbol{\varnothing} \cap \mathbf{E}=$	$\mathbf{E} \cup \sim \mathbf{E}=$
$S \cup \mathbf{E}=$	$\sim(\sim \mathbf{E})=$
$S \cap \mathbf{E}=$	$\sim \mathbf{\varnothing}=$

The set B is a subset of the set $P: \quad B \subseteq P$.

If it is also true that $P \subseteq B$, then $P=B$ (the two sets are identical).
If $B \subseteq P, B \neq P$ and $B \neq \boldsymbol{\emptyset}$, then $B \subset P \quad(B$ is a proper subset of the set $P)$.

$$
\begin{array}{ll}
B \cap P= & \text { For any set or event } \\
B \cup P= & \text { Also: } B \cap \sim P=
\end{array}
$$

Example 2.07

Examples of Venn diagrams:

1. Events A and B both occur.

2. Event A occurs but event C does not.

3. At least two of events
A, B and C occur.
4. Neither B nor C occur.

Example 2.07.4 above is an example of DeMorgan's Laws:
$\sim(A \cup B)=$

$\sim(A \cap B)=$

General Addition Law of Probability

$$
\mathrm{P}[A \vee B]=\mathrm{P}[A]+\mathrm{P}[B]-\mathrm{P}[A \wedge B]
$$

Extended to three events, this law becomes

S

$$
\begin{aligned}
\mathrm{P}[A \vee B \vee & C]=\mathrm{P}[A]+\mathrm{P}[B]+\mathrm{P}[C] \\
& -\mathrm{P}[A \wedge B]-\mathrm{P}[B \wedge C]-\mathrm{P}[C \wedge A] \\
& +\mathrm{P}[A \wedge B \wedge C]
\end{aligned}
$$

If two events A and B are mutually exclusive (= incompatible = have no common sample points), then
$A \cap B=\varnothing \Rightarrow \mathrm{P}[A \wedge B]=0$ and the addition law simplifies to

$$
\mathrm{P}[A \vee B]=\mathrm{P}[A]+\mathrm{P}[B] .
$$

Only when A and B are mutually exclusive may one say " $A \vee B$ " $=$ " $A+B$ ".

Total Probability Law

The total probability of an event A can be partitioned into two mutually exclusive subsets: the part of A that is inside another event B and the part that is outside B :

$$
\mathrm{P}[A]=\mathrm{P}[A \wedge B]+\mathrm{P}[A \wedge \sim B]
$$

Special case, when $A=S$ and $B=E$:

$$
\begin{array}{rlrl}
& & \mathrm{P}[S] & =\mathrm{P}[S \wedge E]+\mathrm{P}[S \wedge \sim E] \\
\Rightarrow \quad 1 & =\mathrm{P}[E]+\mathrm{P}[\sim E]
\end{array}
$$

Example 2.08

Given the information that $\mathrm{P}[A B C]=2 \%, \mathrm{P}[A B]=7 \%, \mathrm{P}[A C]=5 \%$ and $\mathrm{P}[A]=26 \%$, find the probability that, (of events A, B, C), only event A occurs.

A only =

[Example 2.08 continued]

Example 2.09: Roll two fair six-sided dice. The sample space consists of 36 points, as shown below.

Let $\mathbf{E}_{1}=$ "sum $=7$ " then

$$
\mathrm{P}\left[\mathbf{E}_{1}\right]=n\left(\mathbf{E}_{1}\right) \times \mathrm{P}[\text { each sample point }]=n\left(\mathbf{E}_{1}\right) / n(\boldsymbol{S})
$$

Let $\mathbf{E}_{2}=$ "sum >10 " then

$$
\mathrm{P}\left[\mathbf{E}_{2}\right]=
$$

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

\mathbf{E}_{1} and \mathbf{E}_{2} have no common sample points (disjoint sets; mutually exclusive events) \Rightarrow

$$
\mathrm{P}\left[\mathbf{E}_{1} \mathbf{O R} \mathbf{E}_{2}\right]=\mathrm{P}\left[\mathbf{E}_{1}\right]+\mathrm{P}\left[\mathbf{E}_{2}\right]=
$$

The odds of $\left[\mathbf{E}_{1} \mathbf{O R} \mathbf{E}_{2}\right]$ are:

Example 2.09 (continued)
Let $\mathbf{E}_{3}=$ "at least one ' 6 '" then

$$
\mathrm{P}\left[\mathbf{E}_{3}\right]=
$$

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

$\mathrm{P}\left[\mathbf{E}_{1}\right.$ OR $\left.\mathbf{E}_{3}\right]=$

$$
\begin{aligned}
& (\because \text { common points counted twice }) \\
& =\mathrm{P}\left[\mathbf{E}_{1}\right]+\mathrm{P}\left[\mathbf{E}_{3}\right]-\mathrm{P}\left[\mathbf{E}_{1} \text { AND } \mathbf{E}_{3}\right]
\end{aligned}
$$

Venn diagram (each sample point shown):

Venn diagram
(\# sample points shown):

Venn diagram for probability:

S

Some general properties of set/event unions and intersections are listed here:

Commutative: $\quad \mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}, \quad \mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
Associative: $\quad(A \cup B) \cup C=A \cup(B \cup C)=A \cup B \cup C$ $(A \cap B) \cap C=A \cap(B \cap C)=A \cap B \cap C$

Distributive:

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

In each case, these identities are true for all sets (or events) A, B, C.

Example 2.09 (continued)
Find the probability of a total of 7 without rolling any sixes.
$\mathrm{P}\left[\mathbf{E}_{1} \cap \sim \mathbf{E}_{3}\right]=\mathrm{P}\left[\mathbf{E}_{1}\right]-\mathrm{P}\left[\mathbf{E}_{1} \cap \mathbf{E}_{3}\right]$ (total probability law)

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

Example 2.10:
Given the information that $\mathrm{P}[A \vee B]=.9, \mathrm{P}[A]=.7, \mathrm{P}[B]=.6$, find P [exactly one of A, B occurs]

Incorrect labelling of the Venn diagram:

Correct version:

[End of Chapter 2]

