Example $3.01 \quad$ [Navidi Section 2.2; Devore Section 2.3]

Four cards, labelled $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, are in an urn.
In how many ways can three cards be drawn
(a) with replacement?
(b) without replacement?
(c) without replacement (if the order of selection doesn't matter)?
(a) "With replacement" means that, each time a card is drawn, it is put back into the urn before the next card is drawn. Therefore the same card can be withdrawn more than once from the urn. The complete sample space is listed here.

AAA	AAB	AAC	AAD	ABA	ABB	ABC	ABD
ACA	ACB	ACC	ACD	ADA	ADB	ADC	ADD
BAA	BAB	BAC	BAD	BBA	BBB	BBC	BBD
BCA	BCB	BCC	BCD	BDA	BDB	BDC	BDD
CAA	CAB	CAC	CAD	CBA	CBB	CBC	CBD
CCA	CCB	CCC	CCD	CDA	CDB	CDC	CDD
DAA	DAB	DAC	DAD	DBA	DBB	DBC	DBD
DCA	DCB	DCC	DCD	DDA	DDB	DDC	DDD

In general, \# ways to choose r objects from n with replacement is
(b) "Without replacement" means that each time a card is drawn, it stays out of the urn for all subsequent drawings of cards. The same card cannot be drawn more than once. Identify the reduced sample space from part (a):

AAA	AAB	AAC	AAD	ABA	ABB	ABC	ABD
ACA	ACB	ACC	ACD	ADA	ADB	ADC	ADD
BAA	BAB	BAC	BAD	BBA	BBB	BBC	BBD
BCA	BCB	BCC	BCD	BDA	BDB	BDC	BDD
CAA	CAB	CAC	CAD	CBA	CBB	CBC	CBD
CCA	CCB	CCC	CCD	CDA	CDB	CDC	CDD
DAA	DAB	DAC	DAD	DBA	DBB	DBC	DBD
DCA	DCB	DCC	DCD	DDA	DDB	DDC	DDD

In general, the number of ways in which r objects can be drawn from n objects without replacement (with the order of selection being important) is the number of permutations:

$$
{ }^{n} \mathrm{P}_{r}=
$$

Definition - the factorial function, for all positive integers n, is

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 3 \times 2 \times 1
$$

Therefore the number of permutations of r objects from n objects is also

$$
{ }^{n} \mathrm{P}_{r}=
$$

Alternative symbols for permutations include $\mathrm{P}_{r, n}=(n)_{r}={ }^{n} \mathrm{P}_{r}$
(c) If only the identities of the cards drawn from the urn matters, not the order in which they were drawn, then we are seeking the number of combinations of 3 cards from 4.

The permutations $\mathbf{A B C}, \mathbf{A C B}, \mathbf{B A C}$, are all the same combination, because all of these permutations contain the same three cards $\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}$.

However the permutation $\mathbf{A B D}$ is a different combination from the permutation $\mathbf{B A C}$, because one card is different (\mathbf{D} instead of \mathbf{C}).

The single combination $\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}$ contains a number of permutations equal to the number of ways in which the three letters can be re-arranged among themselves:

More generally, a single combination of r objects from n objects contains permutations.

Therefore the number of combinations of r objects from n objects (the number of ways of drawing them without replacement and with the order of selection being irrelevant) is

Note that this definition is consistent only if $0!=1$.

Example 3.02
Four cards, labelled $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, are in an urn.
In how many ways can two cards be drawn
(a) with replacement?
(b) without replacement?
(c) without replacement (if the order of selection doesn't matter)?

For part (a) of this question, the complete sample space is listed below.

AA	AB	AC	AD	BA	BB	BC	BD
CA	CB	CC	CD	DA	DB	DC	DD

(a)
(b)
(c)

The combinations are
AB
AC

AD
BC
BD
CD

The permutations are
AB BA AC
AD DA
BC CB
BD DB
CD DC

Example 3.03

Evaluate $\quad\binom{11}{6}$

Example 3.04
Evaluate $\quad P_{2,9}$

Example 3.05
Simplify $\quad\binom{n}{n-r}$

Example 3.06
Simplify $\quad\binom{n}{n}$

Also note the identities

$$
\begin{aligned}
& { }^{n} \mathrm{P}_{0}=\mathrm{P}_{0, n}={ }^{n} \mathrm{C}_{0}=\binom{n}{0}=\binom{n}{n}={ }^{n} \mathrm{C}_{n}=\mathbf{1} \\
& { }^{n} \mathrm{P}_{n}=\mathrm{P}_{n, n}=n!, \quad{ }^{n} \mathrm{P}_{n-1}=\mathrm{P}_{n-1, n}=n!
\end{aligned}
$$

and $\quad{ }^{n} \mathrm{P}_{1}=\mathrm{P}_{1, n}={ }^{n} \mathrm{C}_{1}=\binom{n}{1}=\binom{n}{n-1}={ }^{n} \mathrm{C}_{n-1}=\boldsymbol{n}$

Summary:

The number of ways to draw r objects from n distinguishable objects is:
[with replacement (ordered):] $=n^{r}$
[without replacement (ordered):] $\quad={ }^{n} \mathrm{P}_{r}$
[without replacement (unordered):] $={ }^{n} \mathrm{C}_{r}$

The case "with replacement (unordered)" seldom arises in practice, but the number of ways of drawing r objects from n distinguishable objects in this case can be shown to be ${ }^{n+r-1} \mathrm{C}_{r}$. See www.engr.mun.ca/~ggeorge/4421/demos/Counts.xls for an illustration of these values for some choices of r and n.

Example 3.07

(a) In how many ways can a team of three men and three women be chosen from a group of five men and six women?
(b) In how many ways can a team of three men and three women be chosen from a group of five men and six women when the team has one leader, one other member and a reserve for the men and likewise for the women?
(a)

Example 3.07 (continued)
(b)
\qquad
Also note the identity ${ }^{n+1} C_{r}={ }^{n} C_{r}+{ }^{n} C_{r-1}$ which leads to Pascal's triangle:

The number of combinations also appears in the binomial expansion $(a+b)^{n}$, where n is a natural number:
$(a+b)^{n}=a^{n}+{ }^{n} C_{1} a^{n-1} b^{1}+{ }^{n} C_{2} a^{n-2} b^{2}+{ }^{n} C_{3} a^{n-3} b^{3}+\ldots+{ }^{n} C_{n-1} a^{1} b^{n-1}+b^{n}$
or

$$
(a+b)^{n}=\sum_{k=0}^{n}{ }^{n} C_{k} a^{n-k} b^{k}
$$

Example 3.08
$z^{3}=(x+j y)^{3}=$

Example 3.09
$(1+x)^{4}=$

