A random quantity [r.q.] maps an outcome to a number.
[Navidi Section 2.4]
[Devore Sections 3.1-3.3]
Example 5.01:
$P=$ "A student passes ENGI 4421"
$F=$ "That student fails ENGI 4421"
The sample space is $S=\{$

Define $\quad X(P)=1, \quad X(F)=0, \quad$ then
X is a random quantity.
Definition: A Bernoulli random quantity has only two possible values: 0 and 1.

Example 5.02
Let $\quad Y=$ the sum of the scores on two fair six-sided dice.
$Y(i, j)=$
The possible values of Y are:

Example 5.03
Let $\quad N=$ the number of components tested when one fails.
The possible values of N are:

A set D is discrete if

A set C is continuous if

Examples:
5.03. Set $\mathbb{N}=$ (the set of all natural numbers) is
5.04. $A=\{x: 1 \leq x \leq 2$ and x is real $\}$ is

A random quantity is discrete if its set of possible values is a discrete set.
Each value of a random quantity has some probability of occurring. The set of probabilities for all values of the random quantity defines a function $p(x)$, known as the
Probability Mass Function
(or probability function)
(p.m.f.):

$$
p(x)=\mathrm{P}[X=x]
$$

Note: X is a random quantity, but x is a particular value of that random quantity.
All probability mass functions satisfy both of these conditions:

and

Example 5.05

$$
p(x)=\left\{\begin{array}{cc}
c x^{2} & x=1,2,3 \\
0 & \text { otherwise }
\end{array} \leftarrow\right. \text { [NOTE: may omit this branch] }
$$

[$p(x)=0$ is assumed for all x not mentioned in the definition of $p(x)$.] $p(x)$ is a probability mass function. Find the value of the constant c.

Bar Chart:

or

Example 5.06

Find the p.m.f. for $\quad X=$ (the number of heads when two fair coins are tossed).

Let $\quad H_{i}=$ head on coin i and $\quad T_{i}=$ tail on coin i.

The possible values of X are $X=$

The Discrete Uniform Probability Distribution

A random quantity X, whose n possible values $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ are all equally likely, possesses a discrete uniform probability distribution.

$$
P\left[X=x_{i}\right]=\frac{1}{n} \quad(i=1,2, \ldots, n)
$$

An example is $X=$ (the score on a fair standard six-sided die),
for which $n=6$ and $x_{i}=i$.

Line graph:

Cumulative Distribution Function (c.d.f.)

$$
F(x)=\mathrm{P}[X \leq x]=\sum_{y: y \leq x} p(y)
$$

Example 5.07

Find the cumulative distribution function for
$X=$ (the number of heads when two fair coins are tossed).
The possible values of X are 0,1 and 2 .

$$
\begin{aligned}
& \text { (1) } \\
& \begin{aligned}
F(0) & =\mathrm{P}[X \leq 0]=p(0)=\frac{1}{4} \\
F(1) & =\mathrm{P}[X \leq 1]=\mathrm{P}[X<1]+\mathrm{P}[X=1] \\
& =F(0)+p(1) \\
& = \\
F(2) & =\mathrm{P}[X \leq 2] \\
& =F(1)+p(2) \\
& =
\end{aligned}
\end{aligned}
$$

When $x<0, \quad F(x)=\mathrm{P}[X \leq x] \leq \mathrm{P}[X<0]=0 \Rightarrow F(x)=0$
When $\quad x>2, \quad F(x)=\mathrm{P}[X \leq x]=F(2)+\mathrm{P}[2<X \leq x]=$

When $1<x<2, \quad F(x)=\mathrm{P}[X \leq x]=F(1)+\mathrm{P}[1<X \leq x]=$

Thus

$$
F(x)=\left\{\begin{array}{ccr}
0 & \text { if } & x<0 \\
1 / 4 & \text { if } & 0 \leq x<1 \\
3 / 4 & \text { if } & 1 \leq x<2 \\
1 & \text { if } & 2 \leq x
\end{array}\right.
$$

The graph of the c.d.f. is:

In general, the graph of a discrete c.d.f. :

- is always non-decreasing
- is level between consecutive possible values (staircase appearance)
- has a finite discontinuity at each possible value (step height $=p(x)$)
- rises in steps from $F(x)=0$ to $F(x)=1$.

Example 5.08 (the inverse of the preceding problem):
Find the probability mass function $p(x)$ given the cumulative distribution function

$$
F(x)=\left\{\begin{array}{cll}
0 & \text { if } & x<0 \\
1 / 4 & \text { if } & 0 \leq x<1 \\
3 / 4 & \text { if } & 1 \leq x<2 \\
1 & \text { if } & 2 \leq x
\end{array}\right.
$$

Steps (= possible values) are at $x=0,1,2$ only.

In general,

$$
P[a<X \leq b]=F(b)-F(a)
$$

If a, b and all possible values are integers, then

$$
P[a \leq X \leq b]=F(b)-F(a-1) \quad \text { and } \quad p(a)=P[X=a]=F(a)-F(a-1)
$$

Example 5.09

Find and sketch the $c . d . f$. for $X=$ (the score upon rolling a fair standard die once).
The p.m.f. is a uniform distribution

$$
p(x)=
$$

Thus $F(x)$ increases from 0 to $1 / 6$ at $x=1$ and increases by steps of $1 / 6$ at each subsequent integer value until $x=6$. It follows easily that

$$
F(x)=
$$

The graph of $F(x)$ has the classic staircase appearance of the cumulative distribution function of a discrete random quantity.

Expected value of a random quantity

Example 5.10:
The random quantity X is known to have the p.m.f.

x	10	11	12	13
$p(x)$.4	.3	.2	.1

If we measure values for X many times, what value do we expect to see on average?
Treat the values of $p(x)$ as point masses of probability:

The expected value $\mathrm{E}[X]$ (= population mean μ) is at the fulcrum (balance point) of the beam.

Taking moments about $x=10$:

In general, for any random quantity X with a discrete probability mass function $p(x)$ and a set of possible values D, the population mean μ of X (and the expected value of X) is

$$
\mathrm{E}[X]=\mu_{X}=\sum_{x \in D} x \cdot p(x)
$$

Shortcut: If X is symmetric about $x=a$, then $\mathrm{E}[X]=$

Example 5.11:

Let $X=$ the number of heads when a coin has been tossed twice. Find $\mathrm{E}[X]$.
Solution:
List the all the possible combinations.
\rightarrow the probability mass function of the distribution of X.

Alternative solution:
Graph of $p(x)$:

The expected value of a function

Definition:

If the random quantity X has set of possible values D and p.m.f. $p(x)$, then the expected value of any function $h(X)$, denoted by $\mathrm{E}[h(X)]$, is computed by

$$
\mathrm{E}[h(X)]=\sum_{\text {all } x} h(x) \cdot p(x)
$$

$\mathrm{E}[h(X)]$ is computed in the same way that $\mathrm{E}[X]$ itself is, except that $h(x)$ is substituted in place of x.

Special case:

$$
h(x)=a x+b \Rightarrow \quad \mathrm{E}[a X+b]=a \mathrm{E}[X]+b
$$

Proof:

Example 5.12:

$C=$ tomorrow's temperature high in ${ }^{\circ} \mathrm{C}$
$F=$ tomorrow's temperature high in ${ }^{\circ} \mathrm{F}$
Given $E[C]=10$, find $E[F]$.

The variance of X

The quantity usually employed to measure the spread in the values of a random quantity X is the population variance $\mathrm{V}[X]=\sigma^{2}=\frac{1}{N} \sum_{x}(x-\mu)^{2}$
Let X have probability mass function $p(x)$ and expected value μ. Then

$$
\mathrm{V}[X]=\sum_{x}(x-\mu)^{2} p(x)=\mathrm{E}\left[(X-\mu)^{2}\right]
$$

The standard deviation of X is $\quad \sigma=\sqrt{\mathrm{V}[X]}$

Example 5.13:

Two different probability distributions [below] share the same mean $\mu=4$

If X has the p.m.f. (as shown in Figure (a))

x	3	4	5
$p(x)$.3	.4	.3

$\mu=$
$\mathrm{V}[X]=$

If X has the p.m.f (as shown in Figure (b))

x	1	2	6	8
$p(x)$.4	.1	.3	.2

$\mu=$
$\mathrm{V}[X]=$

Example 5.14:

Let $X=$ number of heads when a coin has been tossed twice. Find $\mathrm{V}[X]$.
$\mathrm{V}[X]=\mathrm{E}\left[(X-\mu)^{2}\right]=$

A shortcut formula for variance

$$
\mathrm{V}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

Proof:

Note: $\mathrm{E}[f(X)] \neq f(\mathrm{E}[X])$ unless $f(x)$ is linear and/or X is constant.

Example 5.14 (continued):
Let $X=$ number of heads when a coin has been tossed twice.
Find $\mathrm{V}[X]$ using the shortcut formula.

The shortcut is more convenient when μ is not an integer.

Rules of variance [part of Navidi Section 2.5]

Example 5.15:
Do the distributions in the following two figures have the same variance or not?

Example 5.16:
Do the distributions in the following two figures have the same variance or not?

Proof:

The addition of the constant b does not affect the variance, because the addition of b changes the location (and therefore mean value) but not the spread of values.
[Space for any additional notes]

