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Joint Probability Distributions     [Navidi sections 2.5 and 2.6; Devore sections 5.1-5.2] 

 

The joint probability mass function of two discrete random quantities   X,  Y   is  

 

      , Pp x y X x Y y  and     

 

The marginal probability mass functions are  

 

 ( ) ( , )X
y

p x p x y        ( ) ( , )Y

x

p y p x y    

 

 

 

Example 7.01 

 

Find the marginal p.m.f.s for the following joint p.m.f. 

 

 

 ,p x y  y = 3 y = 4 y = 5  Xp x  

x = 0 .30 .10 .20  

x = 1 .20 .05 .15  

 Yp y      

       

 

 

 

Like any other probability mass function,  

a joint p.m.f. must be non-negative for all (x, y) and be coherent,  , 1
x y

p x y
 

 . 

It is easy to check that both conditions are satisfied in example 7.01. 

 

The random quantities   X  and  Y  are independent  if and only if  

 

        , ,X Yp x y p x p y x y    

 

An equivalent statement is           P P P ,X x Y y X x Y y x y          
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In example 7.01,      0 4 .60 .15 .09X Yp p    ,  but   0,4 .10p  . 

Therefore  X  and  Y  are dependent,  

[despite       , 3 3X Yp x p x p   for  x = 0  and  x = 1 !]. 

 

For any two possible events   A  and  B , conditional probability is defined by  

 

][P

][P
]|[P

B

BA
BA


  ,  which leads to the conditional probability mass functions 

)(

),(
)|(

| xp

yxp
xy

XY
p

X

    and   
)(

),(
)|(

| yp

yxp
yx

YX
p

Y

  . 

 

In example 7.01, 

 ,p x y  y = 3 y = 4 y = 5  Xp x  

x = 0 .30 .10 .20 .60 

x = 1 .20 .05 .15 .40 

 Yp y  .50 .15 .35 1 
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Joint Probability Density Functions [for bonus questions only] 

 

The continuous analogue to the discrete joint probability mass function is the joint 

probability density function,  f (x, y). 

 

It must satisfy the conditions    , 0 ,f x y x y   and   , 1f x y dy dx
 

 
  . 

Joint density functions are related to probability statements by integration over intervals: 

     P ,
d b

c a
a X b c Y d f x y dx dy          

Marginal p.d.f.s are defined by  

   ,Xf x f x y dy



     and      ,Yf y f x y dx




   

Conditional p.d.f.s are defined by 

 
 

 |

,
|

Y X
X

f x y
f y x

f x
    and    

 

 |

,
|

X Y
Y

f x y
f x y

f y
 . 

 

Two continuous distributions are independent if and only if  

       , ,X Yf x y f x f y x y    

 

 

Example 7.02    (Navidi, exercises 2.6, page 156, question 20)        [bonus question only] 

 

Let  X  denote the amount of shrinkage (in %) undergone by a randomly chosen fibre of a 

certain type when heated to a temperature of 120C.   Let  Y  represent the additional 

shrinkage (in %) when the fibre is heated to 140C.   The joint probability density 

function of  X  and  Y  is given by  

 
 

 

248
3 4 and 0.5 1

, 49

0 otherwise

x y
x y

f x y


   

 



 

    (a) Find  P 3.25 and 0.8X Y  . 

    (b) Find the marginal probability density functions  Xf x  and  Yf y . 

    (c) Are  X  and  Y  independent?   Explain. 

 

 

    (a)    
3.25

0.8
P 3.25 and 0.8 ,X Y f x y dx dy




      

 2

1 3.25 2

0.8 3

3.25 1

3 0.8

48 48

49 49

x y
dx dy x dx y dy      

 
2 3

3.25 1

3 0.8

48 48 10.5625 9 1 0.512 61

49 2 3 49 2 3 490

x y       
        

     
.124  
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Example 7.02    (continued) 

 

    (b)  

   
2 3 1

1

0.5
0.5

48 48 16 1 2
, 1

49 49 3 49 8 7
X

x y y x
f x f x y dy dy x x





   
       

  
   

 (for  3 < x < 4  only)  and 

 

     
2 2 2

2 2

4
4

3
3

48 48 24 24
, 16 9

49 49 2 49 7
Y

x y x y
f y f x y dx dx y y





 
      

 
   

 (for  0.5 < y < 1  only). 

 

 

 

    (c) For all (x, y) such that  3 < x < 4  and  0.5 < y < 1,  

     
2 22 24 48

,
7 7 49

X Y

x y xy
f x f y f x y      

 Therefore yes,  X  and  Y  are independent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Whenever        , ,f x y g x h y x y    on a rectangular domain aligned with the 

coordinate axes (or on all of 
2
), the random quantities  X  and  Y  are independent. 

 

 

These concepts of joint probability distributions (both discrete and continuous) can be 

extended to the cases of three or more random quantities. 
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Expected Value 
 

E[ ( , )] ( , ) ( , )
x y

h X Y h x y p x y   or     , ,h x y f x y dx dy
 

    

 

A measure of linear dependence is the covariance of   X  and  Y : 

 

      Cov[ , ] E E[ ] E[ ] ( , )X YX Y X X Y Y x y p x y
x y

            

 

or, in the continuous case,  

 

       Cov[ , ] E E[ ] E[ ] ,X YX Y X X Y Y x y f x y dx dy 
 

 
           

 

Manipulate the double summation: 

 Cov[ , ] ( , )X Y X YX Y xy y x p x y
x y

        

       , , , ,X Y X Yxy p x y y p x y x p x y p x y
x y y x x y x y

                

     E E EX Y X YXY Y X        

Therefore 

     Cov[ , ] E E EX Y XY X Y    

 

for both discrete and continuous random quantities. 

Note that   V[ X ]   =   Cov[ X, X ] . 

 

 

In Example 7.01, find the covariance of  X  and  Y : 

 

 

 ,p x y  y = 3 y = 4 y = 5  Xp x  

x = 0 .30 .10 .20 .60 

x = 1 .20 .05 .15 .40 

 Yp y  .50 .15 .35 1 
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Example 7.01    (continued) 

 

 E X   

 

 

 

 E Y 
 

 

 

 

 E XY   

 

 

 

x  y 3 4 5 

0 0  3  .30 0  4  .10 0  5  .20 

1 1  3  .20 1  4  .05 1  5  .15 

 

   

   

 

 

           Cov , E E EX Y XY X Y    

 

   

 

 

   

 

 

 

Note that the covariance depends on the units of measurement.   If  X  is re-scaled by a 

factor  c  and  Y  by a factor  k , then  

             Cov , E E E E E EcX kY cX kY cX kY ck XY c X k Y        

        E E E Cov ,ck XY X Y ck X Y     

 

A special case is       2V Cov , VcX cX cX c X  .    

 

This dependence on the units of measurement of the random quantities can be eliminated 

by dividing the covariance by the product of the standard deviations of the two random 

quantities. 
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The correlation coefficient of    X  and  Y  is      ,Corr , X YX Y     

 

Cov[ , ] E[ ] E[ ] E[ ]

V[ ] V[ ] X Y

X Y XY X Y

X Y


 

 
 


 

 

 

In Example 7.01,    

2E X     

 

V[ X ]   =    

 

 

2E Y     

 

 

V[ Y ]   =    

 

 

     

 

 

 

 

 

Example 7.02     For a joint uniform probability distribution:    

(and noting   x y
x y

x y     ): 

              
 

 

 

 

In general, for constants a, b, c, d, with  a  and  c  both positive or both negative,  

 

     Corr , Corr ,aX b cY d X Y     

 

Also:  1        +1.       
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Rule of thumb:  

      .8        strong correlation 

 

         .5 . 8       moderate correlation 

 

     .5       weak correlation 

 

In the example above,     = 0.0224      very weak correlation (almost uncorrelated). 

 

X , Y   are independent         p(x, y)  =   

 

             E E EXY xy p x p y x p x y p y X Y              

 

     Cov[X , Y ]  =     

 

It then follows that  

X , Y   are independent         X , Y   are uncorrelated   (  = 0) , but  

 

X , Y   are uncorrelated         X , Y   are independent . 

 

 

Counterexample (7.03): 

 

Let the points shown be equally likely.   Then the value of  Y  is completely determined 

by the value of   X .   The two random quantities are thus highly dependent.   Yet they are 

uncorrelated! 
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Linear Combinations of Random Quantities  
 

Let the random quantity   Y   be a linear combination of   n   random quantities  iX  :  

 

 
1i

n

i iY a X


    

 

 
1

then E E
i

n

i iY a X


 
  

  
    

 

 

 

But it can be shown that    
1 1

V[ ] Cov[ , ]
i j

n n

i j i jY a a X X
 

   

 

  independentiX   
2

1

V[ ] V

i

n

i iY a X



     

 

Special case:  1 22, 1, 1n a a    : 

 

 1 2E X X     and  

 

 

 1 2V X X   

 

 

Example 7.04  

 

Two runners’ times in a race are independent random quantities 1T   and 2T  , with  

 

 1 40    
2

1 4  ,  

 

 2 42    
2

2 4  ,  

 

Find 1 2E T T    and 1 2V T T   . 
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Distribution of the Sample Mean   
 

If a random sample of size  n  is taken and the observed values are  1 2 3, , , , nX X X X    

then the iX  are independent and identically distributed  (iid)  (each with population 

mean   and population variance 2 )  and two more random quantities can be defined:  

 

Sample total: 

 
i

iXT  

 

 

Sample mean: 

 
i

iX
nn

T
X

1
  

 

E X     

 

 

 

 

 

Also V X     
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Unbiased estimator  A  for    Biased estimator  B  for  

some unknown parameter   :   the unknown parameter   : 

  

 

 

  

 

 

 

 

 

 

 

 

       E[A]  =         E[B]     

 

 

Which estimator should we choose to estimate   ? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A minimum variance unbiased estimator is ideal. 

[See also Problem Set 7 Question 8] 

  



ENGI 4421 Point Estimation Page 7-12 

 

Accuracy and Precision (Example 7.05)       [Navidi section 3.1; Devore section 6.1] 

 

An archer fires several arrows at the same target.   

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Error    =    Systematic error    +    Random error 

 

          (error)
2
  =           (bias)

2
             +       V[estimator] 

 

Estimator  A  for   is consistent iff    

  E A     and   V 0A   

(as n ) 

 

A particular value  a  of an estimator  A  is an estimate. 
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Sample Mean  
 

A random sample of n values  1 2 3, , , , nX X X X  is drawn from a population of mean 

  and standard deviation  .  

Then 2E , Vi iX X            and the sample mean    
1

1

i

n

iX X
n 

  . 

.estimates X  

   
n

XX
2

V,E


   

But, if   is unknown, then 2  is unknown (usually). 

 

Sample Variance 

 

 

 

 

  

and the sample standard deviation is   2SS   

 

n  1   =   number of degrees of freedom for  S
 2

 . 

 

Justification for the divisor (n  1) [not examinable]:  

 

Using     
22V E EY Y Y      for all random quantities  Y ,  

    
22 2 2E V E Y YY Y Y           

 
2

2
2 1

E Ei i i

i i i

X X X X
n

      
        

       
    

 

2 2

2 2

set
set

1 1
E E E Ei i i i

i i i i

i
i

Y X
Y X

X X X X
n n




        
             

           



   

      
2

2 1
V E V Ei i i i

i i i

X X X X
n

        
          
        
    

        
22 2 21

. . .n n i i d
n

        

 2 2n n   2 2n     21n    

 

     
2 2 2

2 1 2 ...

1

nX X X X X X
S

n

     




 
22

( 1)

i in X X

n n






 



ENGI 4421 Point Estimation Page 7-14 

 

 

 

 

 

 

 

 

 

 

 

 
2S  is the minimum variance unbiased estimator of 2   and  

X   is the minimum variance unbiased estimator of   . 

Both estimators are also consistent. 

 

 

Inference – Some Initial Considerations 

 

Is a null hypothesis oH  true (our “default belief”), or do we have sufficient evidence to 

reject oH  in favour of the alternative hypothesis AH ? 

 

oH  could be “defendant is not guilty” or “ o  ” , etc. 

The corresponding AH  could be “defendant is guilty” or “ o  ”, etc. 

The burden of proof is on AH .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bayesian analysis:    is treated as a random quantity.   Data are used to modify prior 

belief about  .   Conclusions are drawn using both old and new information. 

Classical analysis:   Data are used to draw conclusions about  , without using any prior 

information. 

 [End of Chapter 7] 
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