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Simple Linear Regression               [Navidi Sections 7.2-7.4; Devore Chapter 12] 

[This topic is treated somewhat differently here from the approach in the textbooks.] 

Sometimes an experiment is set up where the experimenter has control over the values of 

one or more variables   X   and measures the resulting values of another variable   Y, 

producing a field of observations. 

The question then arises:   What is the best line 

(or curve) to draw through this field of points? 

 

Values of X are controlled by the experimenter, 

so the non-random variable  x  is called the 

controlled variable  or the  independent 

variable  or the  regressor. 

 

Values of   Y  are random, but are influenced by 

the value of  x.    Thus  Y  is called the  

dependent variable  or the response variable. 

 

We want a “line of best fit” so that, given a value of  x, we can predict the value of  Y  for 

that value of   x .  

 

The simple linear regression model is that the 

predicted value of  y  is  

 

     0 1y x    

 

and that the observed value of  Y  is 

 

  iii xY   10  

where i  is the error. 

   

It is assumed that the errors are normally distributed as  2~ N 0,i  , with a constant 

variance 2 .   The point estimates of the errors i  are the residuals  iii yye ˆ  . 

 

With the assumptions  

1) iii xY   10  

2)   2

0 0 1 o~ N ,x x Y x         

in place, it then follows that  0̂  and 1̂  are unbiased estimators of the coefficients 0   

and 1 . 

  

 

 

Methods for dealing with non-linear regression are available in the course text, but are 

beyond the scope of this course. 



ENGI 4421 Simple Linear Regression Page 15-02 

 

Examples illustrating violations of the assumptions in the simple linear regression model: 

 

1.      2. 

 

  

  

 

 

 

 

 

 

 

 

 

3.      4. 

 

   

  

 

 

 

 

 

 

 

 

 

 

If the assumptions are true, then the probability distribution of |Y x  is  2

0 1 oN ,x   . 
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Example 15.01 

 

Given that 10 0.5i i iY x    , where  ~ N 0, 2i , find the probability that the observed 

value of  y  at  x = 8  will exceed the observed value of  y  at  x =  7. 
 

  ~ N 10 0.5 , 2i iY x  

 

Let 7Y  =  the observed value of  y  at  x = 7 

and  8Y  =  the observed value of  y  at  x = 8,  

then 

 7 ~ NY     and 8 ~ NY  

 

78 ~ NY Y    

 
         

 

 

  8 7P 0Y Y    

 

 

 

 

For  any ix  in the range of the regression model,  more than 95% of all iY  will lie within   

 2 2 2   either side of the regression line. 
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Derivation of the coefficients  0̂  and 1̂   of the regression line  0 1
ˆ ˆy x    : 

 

We need to minimize the errors.     

  

Each error is estimated by the  

observed residual  ˆ
i i ie y y   .         

              

 

  

 

Use the   SSE   (sum of squares due to errors) 

 

   2

0 1 0 1

2

1 1

ˆ ˆ ˆ ˆ,
i i

n n

i i iS e y x f   
 

         

 

Find  0̂  and 1̂    such that     
0 1

0
ˆ ˆ

S S

 

 
 

 
. 

 

  0 1

0 1

ˆ ˆ2 0 1 0 0
ˆ

i

n

i i

S
y x 

 


      


           (1) 

 

 

 

and 

 

 

 

   0 1

1 1

ˆ ˆ2 0 0 0
ˆ

i

n

i i i

S
y x x 

 


      


            (2) 

 

 

or, equivalently, 































yx

y

xx

xn

1

0

2 ˆ

ˆ




             (3) 

 

 

   
0

2

1

1ˆ

ˆ

n x y

x x x y






     

      
      

 
  

            (4) 
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The solution to the linear system of two normal equations (1) and (2) is, 

from the lower row of matrix equation (4):  

 

1
ˆ x y

xx

S

S
   ,   (where  xyn S n x y x y       

     and      
22

xxn S n x x    ) 

or, equivalently, 
 

1

sample covariance of ,ˆ
sample variance of

x y

x
  ; 

[Another alternative arises from 
 

 
Cov ,

Cov , X Y

X Y

X Y
X Y   

 
    


 

1 2
ˆ X Y Y

X X

s s r s
r

s s


 
    ] 

 

From equation (1):    0 1

1ˆ ˆy x
n

      

 

 

A form that is less susceptible to round-off errors (but less convenient for manual 

computations) is  

 

  

 

1
1

2

1

ˆ

n

i

i

n

i

i

i

x x y y

x x

 



 








   and   0 1

ˆ ˆy x   .    

 

 

The regression line of  Y  on  x  is     1
ˆy y x x    . 

 

Equation (1) guarantees that all simple linear regression lines pass through the centroid 

 yx ,  of the data. 

 

It turns out that the simple linear regression method remains valid even if the values of 

the regressor   x   are also random. 

 

However, note that interchanging x with y, (so that Y is the regressor and X is the 

response), results in a different regression line (unless  X and Y are perfectly correlated). 
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Example 15.02  

(the same data set as Example 12.05:  paired two sample  t test) 

 

Nine volunteers are tested before and after a training programme.   Find the line of best 

fit for the posterior (after training) scores as a function of the prior (before training) 

scores. 

 

 

Volunteer:   1  2  3  4  5  6  7  8  9   

 

After training:  75 66 69 45 54 85 58 91 62 

Before training: 72 65 64 39 51 85 52 92 58 

 

Let   Y  = score after training and   X = score before training. 

 

In order to use the simple linear regression model, the assumptions  
 

 iii xY   10  

  2

0 0 1 o~ N ,x x Y x        

 

must hold. 

 

From a scatter plot and a normal probability plot of the data 

(in  http://www.engr.mun.ca/~ggeorge/4421/demos/regress2.xls),  

and  http://www.engr.mun.ca/~ggeorge/4421/demos/ex1202.mpj), 

one can see that the assumptions are reasonable. 

 

 

 

 

 

 

 

 

 

 

 

 

  Scatter plot          Normal probability plot of residuals 
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Calculations:  

 

i   
i

x  
i

y  2

i
x  i i

x y  2

i
y  

1 72 75 5184 5400 5625 

2 65 66 4225 4290 4356 

3 64 69 4096 4416 4761 

4 39 45 1521 1755 2025 

5 51 54 2601 2754 2916 

6 85 85 7225 7225 7225 

7 52 58 2704 3016 3364 

8 92 91 8464 8372 8281 

9 58 62 3364 3596 3844 

      

Sum:  578 605 39384 40824 42397 

 

 

9 40824 578 605x yn S n x y x y         17726   

 

 
22 29 39384 578xxn S n x x       20372   

 

 1

17726ˆ
20372

x y

xx

S

S
    0.870116  

 

and    0 1

1 1ˆ ˆ 605 0.807116 578
9

y x
n

        11.34145  

 

Each predicted value iŷ  of  Y  is then estimated using 0 1
ˆ ˆˆi iy x      11.34 + 0.87 x  

and the point estimates of the unknown errors i  are the observed residuals  ˆi i ie y y  .    

 

A measure of the degree to which the 

regression line fails to explain the 

variation in  Y  is the sum of squares due 

to error, 

 2

0 1

2

1 1

ˆ ˆ

i i

n n

i i iS e y x 
 

      

 

which is given in the adjoining table. 

 

 

 

 

ix  iy  iŷ    ie      2

ie  

72 75 73.98979 1.0102 1.0205 

65 66 67.89898 1.8990 3.6061 

64 69 67.02886 1.9711 3.8854 

39 45 45.27597 0.2760 0.0762 

51 54 55.71736 1.7174 2.9493 

85 85 85.30130 0.3013 0.0908 

52 58 56.58747 1.4125 1.9952 

92 91 91.39211 0.3921 0.1537 

58 62 61.80817 0.1918 0.0368 

        SSE =    13.8141 
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An Alternative Formula for SSE: 

 

 xy 10
ˆˆ   

       







n

i

xxyy
n

i

xxyySSE iiii

1

ˆ

1

ˆˆ
2

1

2

11   

      











n

i

xx
n

i

yyxx
n

i

yy iiii

1

ˆ

1

ˆ2

1

22

11

2
  

2

1 1
ˆ ˆ2yy xy xxS S S     

1
ˆBut

xy

xx

S

S
   

1
ˆ

yy xySSE S S    or

2

xx yy xy

xx

S S S
SSE

S


  or 

    
 

2

xx yy xy

xx

nS nS nS
SSE

n nS





 

 

In this example,   

814.13
372209

726175481537220 2





SSE  

 

However, this formula is very sensitive to round-off errors:   

If all terms are rounded off prematurely to three significant figures, then   

 d.p.285.15
400209

700175001540020 2





SSE  

 

 
 

 
1

2
n

i

iSSE e


      SST   
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The total variation in  Y  is the  SST (sum of squares - total):  

 

            
2

i
yyn S

SST y y
n

     (which is (n  1)  the sample variance of  y). 

 

In this example,   SST  =  15 548 / 9  =  1 727.555... 

 

The total variation (SST) can be partitioned into the variation that can be explained by the 

regression line   2
ˆ

iSSR y y   and the variation that remains unexplained by the 

regression line (SSE).       SST  =  SSR  +  SSE . 

 

 

 

 

 

The proportion of the variation in  Y  that is explained by the regression line is known as 

the coefficient of determination  

 

 
2 1

SSR SSE
r

SST SST
     

 

In this example, 2 13.81
1 .992004

1727.555
r      

Therefore the regression model in this example explains 99.2% of the total variation in  y. 

 

Note: 

xx

xy

xy
S

S
SSSR

2

1
ˆ    

and yySST S   

 

        

2

2 xy

xx yy

S
r

S S
  

 

The coefficient of determination is just the square of the sample correlation coefficient r. 

Thus 2 .996r r  .   It is no surprise that the two sets of test scores in this example are 

very strongly correlated.   Most of the points on the graph are very close to the regression 

line   0.87 11.34y x  . 
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A point estimate of the unknown population variance 2  of the errors   is the sample 

variance or mean square error  2 /s MSE SSE   (number of degrees of freedom).  

 

But the calculation of 2s  includes two parameters that are estimated from the data: 0̂  

and 1̂  .   Therefore two degrees of freedom are lost and  
2

SSE
MSE

n



 .    

In this example,   MSE    1.973. 

 

 

A concise method of displaying some of this information is the ANOVA table (used in 

Chapters 10 and 11 of Devore for analysis of variance).   The  f  value in the top right 

corner of the table is the square of a  t  value that can be used in an hypothesis test on the 

value of the slope coefficient 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source  Degrees of Sums of Squares Mean Squares   f  

    Freedom 

 

Regression         1  SSR = 1713.741... MSR = SSR / 1   = MSR/MSE 

       = 1713.741...   = 868.4... 

 

Error      n  2 SSE =     13.81... MSE = SSE / (n2)  

       = 7     =       1.973... 

 

Total      n  1 SST = 1727.555...  

       = 8 

 

To test o 1: 0 H  (no useful linear association) against A 1: 0 H  (a useful linear 

association exists), we compare  t f   to 
 /2, 2n

t
 

. 
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In this example, 
.0005,7

868.4 29.4t t   (the p-value is < 10
−7

) 

so we reject 
oH  in favour of AH  at any reasonable level of significance  .  

 

The standard error 
b

s  of 1̂  is 
b

xx

s
s

S
  so the  t  value is also equal to   

1
ˆ 0

xx

n MSE

n S

 
  . 

Yet another alternative test of the significance of the linear association is an hypothesis 

test on the population correlation coefficient  o A, : 0 vs. : 0   H H , using the 

test statistic  
2

2

1

r n
t

r





 , which is entirely equivalent to the other two  t statistics 

above. 

 

 

Example 15.03 

 

(a) Find the line of best fit to the data 

 

 x  0  0  1  1  1  2  2  2  3  4 

 

 

 y 6.1 5.3 4.1 5.1 4.4 3.4 2.6 3.1 1.8 2.1 

 

(b) Estimate the value of  y  when  x = 2. 

(c) Why can’t the regression line be used to estimate  y  when  x = 10? 

(d) Find the sample correlation coefficient. 

(e) Does a useful linear relationship between   Y   and   x   exist?  

 

 

(a)  A plot of these data follows.  

 

The Excel spreadsheet file for these data 

can be found at  

 
“http://www.engr.mun.ca 

/~ggeorge/4421/demos 

/regress3.xls” . 
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The summary statistics are  

 

  x  =  16   y  =  38  n  =  10   

 

  x
2
  =  40    xy  =  45.6    y

2
  =  163.06 

 

From which  

 

 n Sxy   =   n  xy     x  y  =  152 

 

 n Sxx   =   n  x
2
    ( x )

2
   =    144   n Syy   =   n  y

2
    ( y )

2
  =  186.6 

 

 

 
1̂      

   

 

0
ˆand     

 

So the regression line is  

 

 

 

(b)  x = 2  y  =   

 

 

(c) x = 10   y  =   

 

 Problem:    

 

 

 

(d)  
152

144 186.6

xy

xx yy

S
r

S S


 


   =  .92727...  ≈  –.93 

 

(e) 
 
 

 
2

2
152

16.04
10 144

xy

xx

n S
SSR

n n S


  


 

 SST  =  Syy  =  ( 186.6 / 10 )  =  18.66  

 

and   SSE  =  SST  SSR  =  18.66  16.04...  =  2.615... 
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 The ANOVA table is then: 

 

 Source    d.f.        SS         MS       f  

 

     R        16.04444...         

 

     E                       

 

     T        18.66000 

 

 from which t f       But 
.0005,8

5.041t      

 

 

 

 Therefore reject o 1: 0 H  in favour of A 1: 0 H  at any reasonable level of 

significance  .    

 

OR 005.7
...85983.1

8...92727.

1

2

2












r

nr
t     

    reject o : 0 H  in favour of A : 0 H  (a significant linear association exists). 

 

 

 

 

 

 
 

 

Confidence and Prediction Intervals  
 

The simple linear regression model   0 1i i iY x       leads to a line of best fit in the 

least squares sense, which provides an expected value of  Y  for each value for x :  

   0 1 |
ˆ ˆˆ E |

Y x
y x Y x      .   

The uncertainty in this expected value has two components:    

 the square of the standard error of the scatter of the observed points about the 

regression line  2 / n , and  

 the uncertainty in the position of the regression line itself, which increases with the 

distance of the chosen  x  from the centroid of the data but decreases with increasing 

spread of the full set of x values:  
 

2

2

xx

x x

S


 
 
 
 

.   

The unknown variance 2  of individual points about the true regression line is estimated 

by the mean square error 2s MSE . 
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Thus a  100 1 %  confidence interval for the expected value of  Y  at 
ox x  has 

endpoints at  

 

    
 

2

o

0 1 o /2,( 2)

1ˆ ˆ
n

xx

x x
x t s

n S 



    

 

The prediction error for a single point is the residual ˆE Y y  , which can be treated as 

the difference of two independent random variables.     The variance of the prediction 

error is then 

  V E   

 

Thus a  100 1 %  prediction interval for a single future observation of  Y  at ox x   

has endpoints at  

    
 

2

o

0 1 o /2,( 2)

1ˆ ˆ 1
n

xx

x x
x t s

n S 



     

 

The prediction interval is always wider than the confidence interval. 

 

 

Example 15.03 (continued)  

 

(f)  Find the 95% confidence interval for the expected value of   Y  at  x = 2 and x = 5. 

(g)  Find the 95% prediction interval for a future value of   Y   at  x  = 2  and at  x = 5. 

 

 

(f)  = 5%      /2 = .025 

 

Using the various values from parts (a) and (e):  

 

 
.025,8

10 2.306 0.57179 1.6n t s x      

 
 0 1

ˆ ˆ14.4 5.4888 1.0555xxS        

 

 o 2x     the 95% CI for |2Y  is  

 
 

2

o

0 1 o /2,( 2)

1ˆ ˆ 3.3777 1.3185 0.1111
n

xx

x x
x t s

n S 



       

 =  3.3777...   0.4395...      2.94    E[ Y | 2 ] <  3.82  (to 3 s.f.) 
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Example 15.03 (continued)  

 

 o 5x     the 95% CI for |5Y  is  

 
 

2

o

0 1 o /2,( 2)

1ˆ ˆ 0.2111 1.3185 0.902777
n

xx

x x
x t s

n S 



       

 =  0.2111...   1.2528...      1.04    E[ Y | 5 ]   1.46  (to 3 s.f.) 

 

(g) o 2x     the 95% PI for  Y  is 

   

 
 

2

o

0 1 o /2,( 2)

1ˆ ˆ 1 3.3777 1.3185 1.1111
n

xx

x x
x t s

n S 



        

 =  3.3777...   1.3898...      1.99    Y  <  4.77  (to 3 s.f.)  at  x = 2 

 

 o 5x     the 95% PI for  Y  is  

 
 

2

o

0 1 o /2,( 2)

1ˆ ˆ 1 0.2111 1.3185 1.902777
n

xx

x x
x t s

n S 



        

 =  0.2111...   1.8188...      1.61  <  Y  <  2.03  (to 3 s.f.) at  x = 5 

 

 

Note  how the confidence and prediction intervals both become wider the further away 

from the centroid the value of ox  is.   The two intervals at  x = 5  are wide enough to 

cross the  x-axis, which is an illustration of the dangers of extrapolation beyond the 

range of  x for which data exist. 

 

Sketch of confidence and prediction intervals for Example 3 (f) and (g):  

(f) 95% Confidence Intervals  (g)  95% Prediction Intervals 
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Confidence Intervals on the Slope 

 

It can be shown that  

1 1
ˆE    

 
   and   

    
  

2

1 2
ˆV

2

xx yy xy

xx xx

n S n S n SMSE

S n n S



   
  

 

Therefore a  100 1 %  confidence interval on the true slope 
1  is  

 

1 /2, 2
ˆ

n
xx

s
t

S



  

 

 

Example 15.02 (continued) 

 

1

20372 17726ˆ9 , , 0.870116 , 13.814
9 20372

xxn S s MSE       

.025,7
2.36462t   

 

A 95% confidence interval on the slope is  
 

 
9 13.814

0.870 2.36 0.870 0.184 0.685,1.055
20372


     

 

At this level of confidence, it is just plausible that a unit increase in “after” score may be 

associated with each unit increase in “before” score. 

 

 

 

 

 

Example 15.03 (continued) 

 

1

152ˆ10 , 14.4 , 1.05 , 0.32694
144

xxn S s MSE


        

.005,8
3.35539t   

 

A 99% confidence interval on the slope is  
 

 
0.32694

1.05 3.35 1.05 0.50559 1.56, 0.55
14.4

         

A unit decrease in Y  for each unit increase in  X  is very consistent with this confidence 

interval. 
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Summary of Formulae for Simple Linear Regression: 

 

First, check that the observations are consistent with  2

0 1~ N ,Y x   , that is,  

a linear trend, a constant variance and residuals consistent with a normal distribution. 

 

Calculate  xyn S n xy x y       and similarly  ,xx yyn S n S . 

Calculate  
1

1 0

ˆ
ˆ ˆand

xy

xx

n S y x

n S n


 


 

 
 

The line of best fit to the data in the least squares sense is 0 1
ˆ ˆŷ x   . 

 

 

Entries in the ANOVA table: 

 

 
 

2

, ,
xyyy

yy
xx

n Sn S
SST S SSR SSE SST SSR

n n n S
      

 

2 2, ,
1 2

SSR SSE MSR
MSR MSE s f t

n MSE
    


 

 

 

Coefficient of determination   

 

 
  

2

2 xy

xx yy

n SSSR
r

SST n S n S
   

 

Sample correlation coefficient   2

1
ˆsignr r   

 

 

To test o A: 0 vs. : 0  H H   (or, equivalently, o 1 A 1: 0 vs. : 0  H H ): 

Use any of 

   

    

2

1

22

ˆ 202
, , ,

1 b

xy

xx yy xy

n S nr n MSR
t t t t

s MSEr n S n S n S

 
   

 

 

in a two-tailed single-sample t-test with (n – 2) degrees of freedom. 

 

In the second formula,   
    

  

2

1 2
ˆV

2

xx yy xy

b
xx xx

n S n S n SMSE
s

S n n S



   
  
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To test o 1 1o A 1 1o: vs. :    H H   use  

      

    
1 1o

1o 2

ˆ 2
or xy xx

b xx yy xy

n
t t n S n S

s n S n S n S

 



  



 

 

 

 

 

The  1 100%   confidence interval estimate for   oE |Y x x    is  

 
 

 

2

o

0 1 o /2, ( 2)

1ˆ ˆ
n

xx

n x x
x t s

n n S 



    

 

The  1 100%   prediction interval estimate for o|Y x x  is  

 
 

 

2

o

0 1 o /2, ( 2)

1ˆ ˆ 1
n

xx

n x x
x t s

n n S 



     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[End of Chapter 15] 

 

[End of ENGI 4421!] 
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