Simple Linear Regression

[Navidi Sections 7.2-7.4; Devore Chapter 12] [This topic is treated somewhat differently here from the approach in the textbooks.]
Sometimes an experiment is set up where the experimenter has control over the values of one or more variables X and measures the resulting values of another variable Y, producing a field of observations.

The question then arises: What is the best line (or curve) to draw through this field of points?

Values of X are controlled by the experimenter, so the non-random variable x is called the controlled variable or the independent variable or the regressor.

Values of Y are random, but are influenced by the value of x. Thus Y is called the dependent variable or the response variable.

We want a "line of best fit" so that, given a value of x, we can predict the value of Y for that value of x.

x

The simple linear regression model is that the predicted value of y is

$$
y=\beta_{0}+\beta_{1} x
$$

and that the observed value of Y is

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}
$$

where ε_{i} is the error.
It is assumed that the errors are normally distributed as $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$, with a constant variance σ^{2}. The point estimates of the errors ε_{i} are the residuals $e_{i}=y_{i}-\hat{y}_{i}$.

With the assumptions

1) $\quad Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$
2) $x=x_{0} \Rightarrow Y \sim \mathrm{~N}\left(\beta_{0}+\beta_{1} x_{\mathrm{o}}, \sigma^{2}\right)$
in place, it then follows that $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are unbiased estimators of the coefficients β_{0} and β_{1}.

Methods for dealing with non-linear regression are available in the course text, but are beyond the scope of this course.

Examples illustrating violations of the assumptions in the simple linear regression model:
1.

3.

2.

4.

If the assumptions are true, then the probability distribution of $Y \mid x$ is $\mathrm{N}\left(\beta_{0}+\beta_{1} x_{\mathrm{o}}, \sigma^{2}\right)$.

Example 15.01

Given that $Y_{i}=10-0.5 x_{i}+\varepsilon_{i}$, where $\varepsilon_{i} \sim \mathrm{~N}(0,2)$, find the probability that the observed value of y at $x=8$ will exceed the observed value of y at $x=7$.

$$
Y_{i} \sim \mathrm{~N}\left(10-0.5 x_{i}, 2\right)
$$

Let $\quad Y_{7}=$ the observed value of y at $x=7$
and $\quad Y_{8}=$ the observed value of y at $x=8$,
then

$$
\begin{aligned}
& Y_{7} \sim \mathrm{~N}\left(\quad \text { and } \quad Y_{8} \sim \mathrm{~N}(\right. \\
\Rightarrow \quad & Y_{8}-Y_{7} \sim \mathrm{~N}(\\
& \mu=\quad \sigma= \\
& \mathrm{P}\left[Y_{8}-Y_{7}>0\right]=
\end{aligned}
$$

For any x_{i} in the range of the regression model, more than 95% of all Y_{i} will lie within $2 \sigma(=2 \sqrt{2})$ either side of the regression line.

Derivation of the coefficients $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ of the regression line $y=\hat{\beta}_{0}+\hat{\beta}_{1} x$:
We need to minimize the errors.
Each error is estimated by the observed residual $e_{i}=y_{i}-\hat{y}_{i}$.

$$
S=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}=f\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)
$$

Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ such that $\frac{\partial S}{\partial \hat{\beta}_{0}}=\frac{\partial S}{\partial \hat{\beta}_{1}}=0$.

$$
\begin{equation*}
\frac{\partial S}{\partial \hat{\beta}_{0}}=2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)(0-1-0)=0 \quad \Rightarrow \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial S}{\partial \hat{\beta}_{1}}=2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)\left(0-0-x_{i}\right)=0 \Rightarrow \tag{2}
\end{equation*}
$$

or, equivalently, $\left[\begin{array}{cc}n & \sum x \\ \sum x & \sum x^{2}\end{array}\right]\left[\begin{array}{c}\hat{\beta}_{0} \\ \hat{\beta}_{1}\end{array}\right]=\left[\begin{array}{c}\sum y \\ \sum x y\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}\hat{\beta}_{0} \\ \hat{\beta}_{1}\end{array}\right]=\left[\begin{array}{cc}n & \sum x \\ \sum x & \sum x^{2}\end{array}\right]^{-1}\left[\begin{array}{c}\sum y \\ \sum x y\end{array}\right]=$

The solution to the linear system of two normal equations (1) and (2) is, from the lower row of matrix equation (4):
$\hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}}$, (where $n S_{x y}=n \sum x y-\sum x \cdot \sum y$

$$
\text { and } \left.\quad n S_{x x}=n \sum x^{2}-\left(\sum x\right)^{2}\right)
$$

or, equivalently, $\hat{\beta}_{1}=\frac{\text { sample covariance of }(x, y)}{\text { sample variance of } x}$;
[Another alternative arises from $\rho=\frac{\operatorname{Cov}[X, Y]}{\sigma_{X} \cdot \sigma_{Y}} \Rightarrow \operatorname{Cov}[X, Y]=\sigma_{X} \cdot \sigma_{Y} \cdot \rho$
$\left.\Rightarrow \quad \hat{\beta}_{1}=\frac{s_{X} \cdot s_{Y} \cdot r}{s_{X}^{2}}=r \frac{s_{Y}}{s_{X}}\right]$

From equation (1):

$$
\hat{\beta}_{0}=\frac{1}{n}\left(\sum y-\hat{\beta}_{1} \sum x\right)
$$

A form that is less susceptible to round-off errors (but less convenient for manual computations) is

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \text { and } \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} .
$$

The regression line of Y on x is

$$
y-\bar{y}=\hat{\beta}_{1}(x-\bar{x}) .
$$

Equation (1) guarantees that all simple linear regression lines pass through the centroid (\bar{x}, \bar{y}) of the data.

It turns out that the simple linear regression method remains valid even if the values of the regressor x are also random.

However, note that interchanging x with y, (so that Y is the regressor and X is the response), results in a different regression line (unless X and Y are perfectly correlated).

Example 15.02
(the same data set as Example 12.05: paired two sample t test)
Nine volunteers are tested before and after a training programme. Find the line of best fit for the posterior (after training) scores as a function of the prior (before training) scores.

Volunteer:	1	2	3	4	5	6	7	8	9
After training:	75	66	69	45	54	85	58	91	62
Before training:	72	65	64	39	51	85	52	92	58

Let $Y=$ score after training and $X=$ score before training.
In order to use the simple linear regression model, the assumptions

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \\
& x=x_{0} \Rightarrow Y \sim \mathrm{~N}\left(\beta_{0}+\beta_{1} x_{\mathrm{o}}, \sigma^{2}\right)
\end{aligned}
$$

must hold.

From a scatter plot and a normal probability plot of the data
(in http://www.engr.mun.ca/~ggeorge/4421/demos/regress2.xls), and http://www.engr.mun.ca/~ggeorge/4421/demos/ex1202.mpj), one can see that the assumptions are reasonable.

Scatter plot

Normal probability plot of residuals

Calculations:

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}{ }^{\mathbf{2}}$	$\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{y}_{\boldsymbol{i}}{ }^{\mathbf{2}}$
1	72	75	5184	5400	5625
2	65	66	4225	4290	4356
3	64	69	4096	4416	4761
4	39	45	1521	1755	2025
5	51	54	2601	2754	2916
6	85	85	7225	7225	7225
7	52	58	2704	3016	3364
8	92	91	8464	8372	8281
9	58	62	3364	3596	3844
Sum:	$\mathbf{5 7 8}$	$\mathbf{6 0 5}$	$\mathbf{3 9 3 8 4}$	$\mathbf{4 0 8 2 4}$	$\mathbf{4 2 3 9 7}$

$n S_{x y}=n \sum x y-\sum x \sum y=9 \times 40824-578 \times 605=\mathbf{1 7 7 2 6}$
$n S_{x x}=n \sum x^{2}-\left(\sum x\right)^{2}=9 \times 39384-578^{2}=\mathbf{2 0 3 7 2}$
$\Rightarrow \quad \hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}}=\frac{17726}{20372}=\underline{\underline{0.870116}}$
and $\quad \hat{\beta}_{0}=\frac{1}{n}\left(\sum y-\hat{\beta}_{1} \sum x\right)=\frac{1}{9}(605-0.807116 \times 578)=\underline{\underline{\mathbf{1 1 . 3 4 1 4 5}}}$

Each predicted value \hat{y}_{i} of Y is then estimated using $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i} \approx 11.34+0.87 x$ and the point estimates of the unknown errors ε_{i} are the observed residuals $e_{i}=y_{i}-\hat{y}_{i}$.

A measure of the degree to which the regression line fails to explain the variation in Y is the sum of squares due to error,

$$
S=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}
$$

which is given in the adjoining table.

x_{i}	y_{i}	\hat{y}_{i}	e_{i}	e_{i}^{2}
72	75	73.98979	1.0102	1.0205
65	66	67.89898	-1.8990	3.6061
64	69	67.02886	1.9711	3.8854
39	45	45.27597	-0.2760	0.0762
51	54	55.71736	-1.7174	2.9493
85	85	85.30130	-0.3013	0.0908
52	58	56.58747	1.4125	1.9952
92	91	91.39211	-0.3921	0.1537
58	62	61.80817	0.1918	0.0368
			$S S E=$	$\underline{\mathbf{1 3 . 8 1 4 1}}$

An Alternative Formula for $\boldsymbol{S S E}$:

$$
\begin{aligned}
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \Rightarrow \\
& \begin{aligned}
S S E & =\sum_{i=1}^{n}\left(y_{i}-\left(\bar{y}-\hat{\beta}_{1} \bar{x}\right)-\hat{\beta}_{1} x_{i}\right)^{2}=\sum_{i=1}^{n}\left(\left(y_{i}-\bar{y}\right)-\hat{\beta}_{1}\left(x_{i}-\bar{x}\right)\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}-2 \hat{\beta}_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)+\hat{\beta}_{1}^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =S_{y y}-2 \hat{\beta}_{1} S_{x y}+\hat{\beta}_{1}^{2} S_{x x}
\end{aligned}
\end{aligned}
$$

But $\quad \hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}}$

$$
\begin{aligned}
& \Rightarrow S S E=S_{y y}-\hat{\beta}_{1} S_{x y} \quad \text { or } \quad S S E=\frac{S_{x x} S_{y y}-S_{x y}{ }^{2}}{S_{x x}} \\
& \text { or } \\
& S S E=\frac{\left(n S_{x x}\right)\left(n S_{y y}\right)-\left(n S_{x y}\right)^{2}}{n \times\left(n S_{x x}\right)}
\end{aligned}
$$

In this example,

$$
S S E=\frac{20372 \times 15548-17726^{2}}{9 \times 20372}=13.814 \ldots
$$

However, this formula is very sensitive to round-off errors:
If all terms are rounded off prematurely to three significant figures, then

$$
S S E=\frac{20400 \times 15500-17700^{2}}{9 \times 20400}=15.85 \quad(2 \mathrm{~d} . \mathrm{p} .)
$$

$S S E=\sum_{i=1}^{n} e_{i}^{2}=$

$S S T=$

The total variation in Y is the $S S T$ (sum of squares - total):

$$
S S T=\frac{n S_{y y}}{n}=\sum\left(y_{i}-\bar{y}\right)^{2} \quad(\text { which is }(n-1) \times \text { the sample variance of } y) .
$$

In this example, $S S T=15548 / 9=\underline{\mathbf{1 7 2 7 . 5 5 5} . . .}$
The total variation (SST) can be partitioned into the variation that can be explained by the regression line $\left(S S R=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}\right)$ and the variation that remains unexplained by the regression line $(S S E) . \quad S S T=S S R+S S E$.

The proportion of the variation in Y that is explained by the regression line is known as the coefficient of determination

$$
r^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}
$$

In this example, $r^{2}=1-\frac{13.81 \ldots}{1727.555 \ldots}=.992004 \ldots$
Therefore the regression model in this example explains 99.2% of the total variation in y.
Note:

$$
S S R=\hat{\beta}_{1} \cdot S_{x y}=\frac{S_{x y}^{2}}{S_{x x}}
$$

and $\quad S S T=S_{y y}$
\Rightarrow

$$
r^{2}=\frac{S_{x y}{ }^{2}}{S_{x x} S_{y y}}
$$

The coefficient of determination is just the square of the sample correlation coefficient r. Thus $r=\sqrt{r^{2}} \approx .996$. It is no surprise that the two sets of test scores in this example are very strongly correlated. Most of the points on the graph are very close to the regression line $y=0.87 x+11.34$.

A point estimate of the unknown population variance σ^{2} of the errors ε is the sample variance or mean square error $s^{2}=M S E=S S E /$ (number of degrees of freedom).

But the calculation of s^{2} includes two parameters that are estimated from the data: $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$. Therefore two degrees of freedom are lost and $M S E=\frac{S S E}{n-2}$. In this example, $M S E \approx 1.973$.

A concise method of displaying some of this information is the ANOVA table (used in Chapters 10 and 11 of Devore for analysis of variance). The f value in the top right corner of the table is the square of a t value that can be used in an hypothesis test on the value of the slope coefficient β_{1}.

Source	Degrees of Freedom	Sums of Squares	Mean Squares	f
Regression	1	$S S R=1713.741 \ldots$	$\begin{aligned} & \mathrm{MSR}=\mathrm{SSR} / 1 \\ & =1713.741 \ldots \end{aligned}$	$\begin{aligned} & =\mathrm{MSR} / \mathrm{MSE} \\ & =868.4 . . \mathrm{l} \end{aligned}$
Error	$\begin{gathered} n-2 \\ =7 \end{gathered}$	$S S E=13.81 \ldots$	$\begin{aligned} & \mathrm{MSE}=\operatorname{SSE} /(n-2) \\ & =\quad 1.973 \ldots \end{aligned}$	
Total	$\begin{gathered} n-1 \\ =8 \end{gathered}$	$S S T=1727.555 \ldots$		

To test $\mathcal{H}_{\mathrm{o}}: \beta_{1}=0$ (no useful linear association) against $\mathcal{H}_{\mathrm{A}}: \beta_{1} \neq 0$ (a useful linear association exists), we compare $|t|=\sqrt{f}$ to $t_{\alpha / 2,(n-2)}$.

In this example, $|t|=\sqrt{868.4 \ldots} \approx 29.4 \gg t_{.0005,7}$ (the p-value is $<10^{-7}$)
so we reject \mathscr{H}_{o} in favour of \mathscr{H}_{A} at any reasonable level of significance α.
The standard error s_{b} of $\hat{\beta}_{1}$ is $s_{b}=\frac{s}{\sqrt{S_{x x}}}$ so the t value is also equal to $\sqrt{\frac{\hat{\beta}_{1}-0}{\sqrt{\frac{n M S E}{n S_{x x}}}}}$. Yet another alternative test of the significance of the linear association is an hypothesis test on the population correlation coefficient $\rho,\left(\mathscr{H}_{\mathrm{o}}: \rho=0\right.$ vs. $\left.\mathcal{H}_{\mathrm{A}}: \rho \neq 0\right)$, using the test statistic $t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}$, which is entirely equivalent to the other two t statistics above.

Example 15.03

(a) Find the line of best fit to the data

x	0	0	1	1	1	2	2	2	3	4
y	6.1	5.3	4.1	5.1	4.4	3.4	2.6	3.1	1.8	2.1

(b) Estimate the value of y when $x=2$.
(c) Why can't the regression line be used to estimate y when $x=10$?
(d) Find the sample correlation coefficient.
(e) Does a useful linear relationship between Y and x exist?
(a) A plot of these data follows.

Example 3
y

The Excel spreadsheet file for these data can be found at
"http://www.engr.mun.ca
/~ggeorge/4421/demos
/regress3.xls".

The summary statistics are

$$
\begin{array}{lll}
\Sigma x=16 & \Sigma y=38 & n=10 \\
\Sigma x^{2}=40 & \Sigma x y=45.6 & \Sigma y^{2}=163.06
\end{array}
$$

From which

$$
\begin{aligned}
& n S_{x y}=n \Sigma x y-\Sigma x \Sigma y=-152 \\
& n S_{x x}=n \Sigma x^{2}-(\Sigma x)^{2}=144 \quad n S_{y y}=n \Sigma y^{2}-(\Sigma y)^{2}=186.6
\end{aligned}
$$

Example 3

$$
\Rightarrow \quad \hat{\beta}_{1}=
$$

and $\quad \hat{\beta}_{0}=$

So the regression line is

(b) $\quad x=2 \Rightarrow \quad y=$
(c) $x=10 \Rightarrow \quad y=$

Problem:
(d) $\quad r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{-152}{\sqrt{144 \times 186.6}}=-.92727 \ldots \approx \underline{-.93}$
(e) $\quad S S R=\frac{\left(n S_{x y}\right)^{2}}{n\left(n S_{x x}\right)}=\frac{(-152)^{2}}{10 \times 144}=16.0 \dot{4}$

$$
S S T=S_{y y}=(186.6 / 10)=18.66
$$

and $S S E=S S T-S S R=18.66-16.04 \ldots=2.615 \ldots$

The ANOVA table is then:

Source	d.f.	$S S$	$M S$	f
R		$16.04444 \ldots$		
E				
T				

from which $t=-\sqrt{f} \approx \quad$ But $t_{.0005,8}=5.041 \ldots$

Therefore reject $\mathscr{H}_{0}: \beta_{1}=0$ in favour of $\mathscr{H}_{\mathrm{A}}: \beta_{1} \neq 0$ at any reasonable level of significance α.

OR $\quad t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}=\frac{-.92727 \ldots \times \sqrt{8}}{\sqrt{1-.85983 \ldots}} \approx-7.005$
$\Rightarrow \quad$ reject $\mathcal{H}_{\mathrm{o}}: \rho=0$ in favour of $\mathcal{H}_{\mathrm{A}}: \rho \neq 0$ (a significant linear association exists).

Confidence and Prediction Intervals

The simple linear regression model $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$ leads to a line of best fit in the least squares sense, which provides an expected value of Y for each value for x :

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x=\mathrm{E}[Y \mid x]=\mu_{Y \mid x} .
$$

The uncertainty in this expected value has two components:

- the square of the standard error of the scatter of the observed points about the regression line $\left(=\sigma^{2} / n\right)$, and
- the uncertainty in the position of the regression line itself, which increases with the distance of the chosen x from the centroid of the data but decreases with increasing spread of the full set of x values: $\sigma^{2}\left(\frac{(x-\bar{x})^{2}}{S_{x x}}\right)$.
The unknown variance σ^{2} of individual points about the true regression line is estimated by the mean square error $s^{2}=M S E$.

Thus a $100(1-\alpha) \%$ confidence interval for the expected value of Y at $x=x_{0}$ has endpoints at

$$
\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{\mathrm{o}}\right) \pm t_{\alpha / 2,(n-2)} s \sqrt{\frac{1}{n}+\frac{\left(x_{\mathrm{o}}-\bar{x}\right)^{2}}{S_{x x}}}
$$

The prediction error for a single point is the residual $E=Y-\hat{y}$, which can be treated as the difference of two independent random variables. The variance of the prediction error is then

$$
\mathrm{V}[E]=
$$

Thus a $100(1-\alpha) \%$ prediction interval for a single future observation of Y at $x=x_{\text {o }}$ has endpoints at

$$
\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{\mathrm{o}}\right) \pm t_{\alpha / 2,(n-2)} s \sqrt{1+\frac{1}{n}+\frac{\left(x_{\mathrm{o}}-\bar{x}\right)^{2}}{S_{x x}}}
$$

The prediction interval is always wider than the confidence interval.

Example 15.03 (continued)

(f) Find the 95% confidence interval for the expected value of Y at $x=2$ and $x=5$. (g) Find the 95% prediction interval for a future value of Y at $x=2$ and at $x=5$.
(f) $\alpha=5 \% \Rightarrow \alpha / 2=.025$

Using the various values from parts (a) and (e):

$$
\begin{gathered}
n=10 \quad t_{.025,8}=2.306 \ldots \quad s=0.57179 \ldots \quad \bar{x}=1.6 \\
S_{x x}=14.4 \quad \hat{\beta}_{0}=5.4888 \ldots \quad \hat{\beta}_{1}=-1.0555 \ldots \\
x_{\mathrm{o}}=2 \Rightarrow \text { the } 95 \% \mathrm{CI} \text { for } \mu_{Y \mid 2} \text { is } \\
\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{\mathrm{o}}\right) \pm t_{\alpha / 2,(n-2)} s \sqrt{\frac{1}{n}+\frac{\left(x_{\mathrm{o}}-\bar{x}\right)^{2}}{S_{x x}}}=3.3777 \ldots \pm 1.3185 \ldots \times \sqrt{0.1111 \ldots} \\
=3.3777 \ldots \pm 0.4395 \ldots \Rightarrow \underline{2.94 \leq \mathrm{E}[Y \mid 2]<3.82} \text { (to } 3 \text { s.f.) }
\end{gathered}
$$

Example 15.03 (continued)

$$
\begin{gathered}
x_{\mathrm{o}}=5 \Rightarrow \text { the } 95 \% \mathrm{CI} \text { for } \mu_{Y \mid 5} \text { is } \\
\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{\mathrm{o}}\right) \pm t_{\alpha / 2,(n-2)} s \sqrt{\frac{1}{n}+\frac{\left(x_{\mathrm{o}}-\bar{x}\right)^{2}}{S_{x x}}}=0.2111 \ldots \pm 1.3185 \times \sqrt{0.902777 \ldots} \\
=0.2111 \ldots \pm 1.2528 \ldots \Rightarrow-1.04 \leq \mathrm{E}[Y \mid 5] \leq 1.46 \text { (to } 3 \text { s.f.) }
\end{gathered}
$$

(g) $\quad x_{\mathrm{o}}=2 \Rightarrow$ the 95% PI for Y is

$$
\begin{aligned}
& \left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{\mathrm{o}}\right) \pm t_{\alpha / 2,(n-2)} s \sqrt{1+\frac{1}{n}+\frac{\left(x_{\mathrm{o}}-\bar{x}\right)^{2}}{S_{x x}}}=3.3777 \ldots \pm 1.3185 \ldots \times \sqrt{1.1111 \ldots} \\
& \quad=3.3777 \ldots \pm 1.3898 \ldots \Rightarrow \underline{1.99 \leq Y<4.77} \text { (to } 3 \text { s.f.) at } x=2 \\
& x_{\mathrm{o}}=5 \Rightarrow \text { the } 95 \% \text { PI for } Y \text { is }
\end{aligned}
$$

$$
\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{\mathrm{o}}\right) \pm t_{\alpha / 2,(n-2)} s \sqrt{1+\frac{1}{n}+\frac{\left(x_{\mathrm{o}}-\bar{x}\right)^{2}}{S_{x x}}}=0.2111 \ldots \pm 1.3185 \times \sqrt{1.902777 \ldots}
$$

$$
=0.2111 \ldots \pm 1.8188 \ldots \Rightarrow \underline{-1.61<Y<2.03} \text { (to } 3 \text { s.f.) at } x=5
$$

Note how the confidence and prediction intervals both become wider the further away from the centroid the value of x_{0} is. The two intervals at $x=5$ are wide enough to cross the x-axis, which is an illustration of the dangers of extrapolation beyond the range of x for which data exist.

Sketch of confidence and prediction intervals for Example 3 (f) and (g):
(f) 95% Confidence Intervals

(g) 95% Prediction Intervals

Confidence Intervals on the Slope

It can be shown that

$$
\mathrm{E}\left[\hat{\beta}_{1}\right]=\beta_{1} \quad \text { and } \quad \mathrm{V}\left[\hat{\beta}_{1}\right]=\frac{M S E}{S_{x x}}=\frac{\left(n S_{x x}\right)\left(n S_{y y}\right)-\left(n S_{x y}\right)^{2}}{(n-2)\left(n S_{x x}\right)^{2}}
$$

Therefore a $100(1-\alpha) \%$ confidence interval on the true slope β_{1} is

$$
\hat{\beta}_{1} \pm t_{\alpha / 2, n-2} \frac{s}{\sqrt{S_{x x}}}
$$

Example 15.02 (continued)

$$
\begin{aligned}
& n=9, \quad S_{x x}=\frac{20372}{9}, \quad \hat{\beta}_{1}=\frac{17726}{20372} \approx 0.870116, \quad s=\sqrt{M S E}=\sqrt{13.814 \ldots} \\
& t_{.025,7}=2.36462
\end{aligned}
$$

A 95\% confidence interval on the slope is

$$
0.870 \ldots \pm 2.36 \ldots \sqrt{\frac{9 \times 13.814 \ldots}{20372}}=0.870 \ldots \pm 0.184 \ldots=(0.685,1.055)
$$

At this level of confidence, it is just plausible that a unit increase in "after" score may be associated with each unit increase in "before" score.

Example 15.03 (continued)
$n=10, \quad S_{x x}=14.4, \quad \hat{\beta}_{1}=\frac{-152}{144}=-1.0 \dot{5}, \quad s=\sqrt{M S E}=\sqrt{0.3269 \dot{4}}$
$t_{.005,8}=3.35539$
A 99% confidence interval on the slope is

$$
-1.0 \dot{5} \pm 3.35 \ldots \sqrt{\frac{0.3269 \dot{4}}{14.4}}=-1.0 \dot{5} \pm 0.50559 \ldots=[-1.56,-0.55]
$$

A unit decrease in Y for each unit increase in X is very consistent with this confidence interval.

Summary of Formulae for Simple Linear Regression:

First, check that the observations are consistent with $Y \sim \mathrm{~N}\left(\beta_{0}+\beta_{1} x, \sigma^{2}\right)$, that is, a linear trend, a constant variance and residuals consistent with a normal distribution.

Calculate $n S_{x y}=n \sum x y-\sum x \cdot \sum y$ and similarly $n S_{x x}, n S_{y y}$.
Calculate $\hat{\beta}_{1}=\frac{n S_{x y}}{n S_{x x}} \quad$ and $\quad \hat{\beta}_{0}=\frac{\sum y-\hat{\beta}_{1} \sum x}{n}$
The line of best fit to the data in the least squares sense is $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$.

Entries in the ANOVA table:

$$
\begin{aligned}
& S S T=S_{y y}=\frac{n S_{y y}}{n}, \quad S S R=\frac{\left(n S_{x y}\right)^{2}}{n\left(n S_{x x}\right)}, \quad S S E=S S T-S S R \\
& M S R=\frac{S S R}{1}, \quad M S E=s^{2}=\frac{S S E}{n-2}, \quad f=t^{2}=\frac{M S R}{M S E}
\end{aligned}
$$

Coefficient of determination
$r^{2}=\frac{S S R}{S S T}=\frac{\left(n S_{x y}\right)^{2}}{\left(n S_{x x}\right)\left(n S_{y y}\right)}$
Sample correlation coefficient $=r=\operatorname{sign}\left(\hat{\beta}_{1}\right) \sqrt{r^{2}}$

To test $\mathscr{H}_{\mathrm{o}}: \rho=0$ vs. $\mathcal{H}_{\mathrm{A}}: \rho \neq 0$ (or, equivalently, $\mathcal{H}_{\mathrm{o}}: \beta_{1}=0$ vs. $\mathcal{H}_{\mathrm{A}}: \beta_{1} \neq 0$): Use any of

$$
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}, \quad t=\frac{\hat{\beta}_{1}-0}{s_{b}}, \quad t=\sqrt{\frac{M S R}{M S E}}, \quad t=\sqrt{\frac{\left(n S_{x y}\right)^{2}(n-2)}{\left(n S_{x x}\right)\left(n S_{y y}\right)-\left(n S_{x y}\right)^{2}}}
$$

in a two-tailed single-sample t-test with $(n-2)$ degrees of freedom.
In the second formula, $s_{b}=\sqrt{\mathrm{V}\left[\hat{\beta}_{1}\right]}=\sqrt{\frac{M S E}{S_{x x}}}=\sqrt{\frac{\left(n S_{x x}\right)\left(n S_{y y}\right)-\left(n S_{x y}\right)^{2}}{(n-2)\left(n S_{x x}\right)^{2}}}$

To test $\mathscr{H}_{\mathrm{o}}: \beta_{1}=\beta_{1 \mathrm{o}}$ vs. $\mathcal{H}_{\mathrm{A}}: \beta_{1}>\beta_{1 \mathrm{o}}$ use

$$
t=\frac{\hat{\beta}_{1}-\beta_{10}}{s_{b}} \quad \text { or } \quad t=\left(\left(n S_{x y}\right)-\beta_{10}\left(n S_{x x}\right)\right) \sqrt{\frac{(n-2)}{\left(n S_{x x}\right)\left(n S_{y y}\right)-\left(n S_{x y}\right)^{2}}}
$$

The $(1-\alpha) \times 100 \%$ confidence interval estimate for $\mu=\mathrm{E}\left[Y \mid x=x_{0}\right]$ is

$$
\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{\mathrm{o}}\right) \pm t_{\alpha / 2,(n-2)} s \sqrt{\frac{1}{n}+\frac{n\left(x_{\mathrm{o}}-\bar{x}\right)^{2}}{\left(n S_{x x}\right)}}
$$

The $(1-\alpha) \times 100 \%$ prediction interval estimate for $Y \mid x=x_{0}$ is

$$
\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{\mathrm{o}}\right) \pm t_{\alpha / 2,(n-2)} s \sqrt{1+\frac{1}{n}+\frac{n\left(x_{\mathrm{o}}-\bar{x}\right)^{2}}{\left(n S_{x x}\right)}}
$$

