
ENGI 9420 4.07  -  Limit Cycles Page 4.50 
 

 

4.07 Limit Cycles    
 
If, in some region, all trajectories begin on a closed curve 
inside that region, then that curve is an unstable limit cycle. 
 
 
 

 
If all trajectories terminate on the curve, then it is a stable limit 
cycle. 
 
 
 

 
More formally,  
Let  R  be a bounded region in the xy plane. 
Let  C  be a closed curve composed of interior points of  R  and bounding a region  A.   
Let  C  be a solution curve of the system  

  ( ) ( ), , ,dx dyx P x y y Q x y
dt dt

= = = =� �  (1) 

where  P(x, y)  and  Q(x, y)  are differentiable with respect to  x  and  y  at all points of R. 
C  is a limit cycle of (1) if no other closed solution curve is close to C and if all orbits 
sufficiently near it approach it asymptotically as  t → –∞ (unstable) or as t → +∞ (stable). 
 
 
 
 
Bendixon Non-existence Theorem: 
 

For system (1), if the expression P Q
x y

∂ ∂
+

∂ ∂
 does not change sign or vanish identically in 

a simply connected (= "no holes") region D inside R, then no closed trajectory can exist 
entirely within D.  
 
The contrapositive statement is: 

If  C  is a closed solution curve of (1) in R, then P Q
x y

∂ ∂
+

∂ ∂
 must vanish for some subset 

of R.  
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Proof:  
 
If  C  is a closed curve in  R  with interior region  A, then Green’s theorem in two 
dimensions states 

 ( )
C A

P QP dy Q dx dx dy
x y

⎛ ⎞∂ ∂
− = +⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫  (2) 

But, for all points on  C, (which is a solution curve of (1)), 

0dy y QP dy Q dx P Q dx P Q dx P Q dx
dx x P

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − = − = − ≡⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�
�

 

It then follows that  

( ) 0
C A

P QP dy Q dx dx dy
x y

⎛ ⎞∂ ∂
− = + =⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫v  

This is not possible unless the integrand P Q
x y

∂ ∂
+

∂ ∂
 changes sign or is identically zero 

inside region A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Poincaré-Bendixon Theorem (Existence Theorem for Limit Cycles)  
 
If the solution curve  C  of the system (1) is in and remains in a bounded region R for 
t > to without approaching singular points and if  P(x, y)  and  Q(x, y)  are differentiable 
with respect to  x  and  y  at all points of R, then a limit cycle exists in  R  and either  C  is 
a limit cycle or it approaches a limit cycle as t → +∞. 
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4.08 Van der Pol’s Equation    
 
During an investigation of the properties of vacuum tubes, Van der Pol developed a 
second order non-linear ordinary differential equation to model the circuit:  

 ( ) ( )
2

2
2 1 0 ,d x dxx x

dt dt
μ μ− − + = > 0  (1) 

 
The linear form resembles the linear ODE for the RLC circuit: 

 
2

2

1 0d i R di i
dt L dt LC

+ + =  (2) 

 
The resistance term in (2) provides damping provided  R > 0. 
If  R < 0, then the solution is unstable and the current would have an ever increasing 
amplitude, which is what the linear form of (1) predicts, (–μ  < 0). 
 
However, experimental evidence suggests that, after some initial increase in amplitude, a 
periodic solution is attained.   This is an indication that a limit cycle may exist for (1). 
 
The “resistance” term  –μ (1 – x2)  in Van der Pol’s equation is negative if  | x | < 1, but is 
positive for  | x | > 1.   The non-linear term must be retained in order to find the periodic 
steady state solution. 
 
Introduce a new variable y to Van der Pol’s equation: 

 
( )21

dx y
dt
dy x y x
dt

μ

=

= − −
 (3) 

The linear version of (3) is: 

 
0 1
1

x x
y yμ

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

�
�

 (4) 

Finding the critical points of (3): 

0 0 , 0dx dyy y
dt dt

= ⇒ = = = ⇒ = 0x  

Thus (0, 0) is the only critical point of (3). 
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Applying the formulae from page 4.30: 
( ) ( ) ( )( )2 2 24 0 4 1 1D a d bc μ μ= − + = − + − = − 4  

so that  D < 0  for  0 < μ < 2   and   D > 0  for  μ > 2 
(a + d)  =  μ  > 0 
 
0 < μ < 2      ⇒   the critical point (0, 0) is an unstable focus. 
 
μ > 2      ⇒   (0, 0) is an unstable node. 
 
The eigenvalues are  

( ) ( )
2 4 Re 0

2 2
a d D μ μ

λ λ
+ ± ± −

= = ⇒ >  

so that (0, 0) is unstable for all  μ > 0. 
 
 
 
 
 
Searching for limit cycles: 
 

( ) ( )( ) ( )2 21 1P Q y x x y
x y x y

μ μ∂ ∂ ∂ ∂
+ = + − + − = −

∂ ∂ ∂ ∂
x  

1 0P Qx
x y

∂ ∂
< ⇒ + >

∂ ∂
 

Because P Q
x y

∂ ∂
+

∂ ∂
 does not change sign anywhere in the region  | x | < 1, there are no 

limit cycles contained entirely in that region (by the Bendixon Non-existence Theorem).   
There may be a limit cycle in a region that includes  x = –1  and/or  x = +1. 
 
Transforming (3) to polar coordinates,  

2 2r x y= + 2  

( ) ( )( ) ( )2 21 1dr dx dyr x y x y y x y x x
dt dt dt

μ μ⇒ = + = + − − = − 2y  

so that  r  is increasing with time for  | x | < 1, but decreasing for | x | > 1 and not changing 
when  x = ±1. 
 
This suggests that a region extending to a sufficiently large x may contain a limit cycle. 
When  0 < μ < 2   a closed periodic solution is possible and a limit cycle occurs. 
When  μ > 2  a closed periodic solution is impossible and there is no limit cycle. 
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A Maple session that produces solution curves for the Van der Pol equation with μ = 1 
for two choices of starting point (one inside the limit cycle, one outside) is presented 
here. 
 
> with(DEtools): 
> phaseportrait([diff(x(t),t) = y(t), diff(y(t),t) =  
y(t)*(1 - (x(t))^2) - x(t)], 
[x(t),y(t)], t=0..20, [[x(0)=0,y(0)=0.1]], x=-3..3,  
y=-3..3, stepsize=0.05, linecolour=t/2, title=`Van der Pol, 
mu=1`); 
> phaseportrait([diff(x(t),t) = y(t), diff(y(t),t) =  
y(t)*(1 - (x(t))^2) - x(t)], 
[x(t),y(t)], t=0..20, [[x(0)=-2,y(0)=3]], x=-4..4, y=-4..4, 
stepsize=0.03, linecolour=t/2, title=`Van der Pol, mu=1`); 
 
with output, clearly illustrating the limit cycle crossing x = –1 and x = +1: 

 
 
Again note how the trajectories move away from the origin only in the region –1 < x < 1. 
 
 



ENGI 9420 4.09  -  Theorem for Limit Cycles Page 4.55 
 

4.09 Theorem for Limit Cycles    
 
Theorem (Extension of the Poincaré-Bendixon theorem): 
 
Let  D  be an annular region between closed curves  C1  and  C2. 
 
 
 
 
 
 
 
   [stable]   [unstable] 
 
If solution curves of the system 

  ( ) ( ), , ,dx dyx P x y y Q x y
dt dt

= = = =� �  (1) 

enter  D  at every point of  C1  and  C2 (or leave at every point of  C1  and  C2), and  
there are no singularities of (1) in  D  or on  C1  or  C2 , then 
a limit cycle exists in D.  
 
It also follows that a closed curve cannot be a limit cycle unless it encloses a singularity. 
 
Example 4.09.1    
 

Determine whether a limit cycle exists for the second order ODE 
2

2
2 1 0d x x

dt
+ + = . 

 
 
The ODE can be rewritten as the first order non-linear system  

2 1
x y
y x
=

= − −

�
�

 

But  –x2 – 1 < 0  for all real  x. 
No critical point exists for real (x, y). 
But a limit cycle must enclose a singularity. 
Therefore no limit cycle exists for this system. 
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Example 4.09.2   
 
Perform a stability analysis and determine whether a limit cycle exists for the system 

 
( )

( )

2 2

2 2

1 5

5 1

dx x x y y
dt
dy x y x y
dt

= − − +

= − + − −
 (1) 

 
 
One critical point occurs where  x = y = 0. 
Substitution of x = 0 into (1) leads to  y = 0 and vice versa. 
If  x ≠ 0  and  y ≠ 0, then  (1)  ⇒  at a critical point 

( )
2

2 2 5 51 1y x yx y
x y x

− ⎛ ⎞− − = = ⇒ = −⎜ ⎟
⎝ ⎠

 

which has no real solution for (x, y).   Therefore (0, 0) is the only critical point of (1). 
 
Near (0, 0), the linear approximation to (1) is 

 
1 5
5 1

x x
y y

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

�
�

 (2) 

The eigenvalues may be found either by solving 
1 5

0
5 1
λ

λ
−

=
− −

 or by use of the 

formula on page 4.30:  
( ) ( ) ( )( )2 24 1 1 4 5 5 100D a d bc= − + = − + − = −  

( ) 2 100 1 5
2 2

a d D
jλ

+ ± ± −
= = = ±  

The eigenvalues are a complex conjugate pair with positive real part  
⇒  the critical point of (2) (and therefore also of (1)) is an unstable focus.  
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Example 4.09.2  (continued) 
 
Checking for a limit cycle,  

( )( ) ( )( )
( )( )

2 2 2 2

2 2 2 2 2 2

1 5 5 1

1 3 1 3 2 1 2

P Q x x y y x y x y
x y x y

x y x y x y

∂ ∂ ∂ ∂
+ = − − + + − + − −

∂ ∂ ∂ ∂

= − − + − − = − +
 

( )
( )

2 2

2 2

1
2
1
2

0

0

x yP Q
x y x y

⎧ > + <∂ ∂ ⎪⇒ + ⎨∂ ∂ < + >⎪⎩
 

There may therefore be a limit cycle in a region bounded by 2 2 2x y r+ = , where 2 1
2 ,r >  

but it cannot exist entirely inside 2 2 1
2x y+ = . 

 
Changing to polar coordinates,  

2 2 2 2 2 2dr dx dyr x y r x y
dt dt dt

= + ⇒ = +  

From the original non-linear system: 

( )( ) ( )( )2 2 2 21 5 5 1drr x x x y y y x y x y
dt

= − − + + − + − −  

( ) ( ) ( )2 2 2 2 2 25 1 5 1 1xy x r xy y r r r= + + − − + − = −  

( ) ( )
( )

2 0 1
1

0 1
rdr r r
rdt

< >⎧⎪⇒ = − ⎨ > <⎪⎩
 

Therefore solutions that start closer than one unit to the critical point spiral out, but 
solutions that start further away than one unit approach the critical point.   A solution on 
the circle  r = 1 never changes its distance from the origin and stays on that circle, but is 
not stationary. 
 
Therefore  x2 + y2  =  1  is the limit cycle. 
 
Consider the region  D  bounded by the circles x2 + y2 = 1/100  and  x2 + y2 = 2, inside 

which P Q
x y

∂ ∂
+

∂ ∂
 and dr

dt
 both change sign.    All trajectories crossing the inner circle 

must be moving away from the origin into region D and all trajectories crossing the outer 
circle must be moving towards the origin, also into region D. 
 
Thus, a solution path that enters D  can never leave D. 
There are no singularities in the region or its boundaries.    
Therefore, by the Poincaré-Bendixon theorem, a limit cycle exists in the region. 
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Example 4.09.2  (continued) 
 

 
 
 
 
Checking that  x2 + y2  =  1  is a solution to the non-linear equation:  

( ) ( )2 2 2 21 5 5 and 5 1d x d y 5x x y y y x y x y
dt dt

= − − + = = − + − − = − x  

d y d y d x x
d x dt dt y

⇒ = ÷ = −  

But 2 2 1 2 2 0dy dy xx y x y
dx dx y

+ = ⇒ + = ⇒ = −  

Therefore the limit cycle  x2 + y2  =  1  is a solution to the non-linear system (1). 
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4.10 Lyapunov Functions   [for reference only - not examinable] 
 
The equation of motion for an unforced damped elastic mass-spring system is  

 
2

2 0d x d x x
dt dt

ε μ+ + =  (1) 

Consider the case where the restoring force (per unit mass) coefficient  μ  = 1  and the 
damping (per unit mass) coefficient  ε  is small and positive.   The equivalent first order 
system is 

 

d x y
dt
d y x y
dt

ε

=

= − −
 (2) 

The coefficient matrix is  
0 1
1

A
ε

⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

 

Using the results on page 4.30, 
( ) ( ) ( )( )2 2 24 0 4 1 1 4D a d bc ε ε= − + = + + − = − < 0  

( ) 24
2 2

a d D jε ε
λ

+ ± − ± −
= =  

[or solve the characteristic equation  det(A – λI) = 0: 
( )( ) ( )( ) 20 1 1 0λ ε λ λ ελ− − − − − = ⇒ − + =1 0 .] 
 
The single critical point at the origin is therefore a stable focus (asymptotically stable).  
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The kinetic energy is  
2

2 21 1 1
2 2 2

dxmv m my
dt

⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 

The potential energy of a mass-spring system is proportional to the square of the 
extension x.   Therefore the function ( ) ( )2 21

2,V x y x y= +  is related to the total energy 
of the system.   V(x, y) has an absolute minimum value of 0 at the origin, which should 
therefore be a stable equilibrium point. 
 
 
 
 
From the chain rule and (2),  

( ) 2 0dV V dx V dy x y y x y y
dt x dt y dt

ε ε∂ ∂
= + = ⋅ + − − = − ≤

∂ ∂
t∀

=

 

Therefore  V  decreases as  t  increases. 
Also V  decreases as the distance from the origin decreases. 
Therefore the distance from the origin must decrease as  t  increases. 

( ) ( )lim lim 0
t t

x t y t
→∞ →∞

= . All orbits terminate at the origin. 

Again, the origin is an asymptotically stable point. 
 
 
Energy considerations and Stability:  
 
For a system of differential equations that arises from the description of a physical 
system, if the total energy of the system is constant or decreasing and a critical point 
corresponds to a point of minimum potential energy of the system, then the critical point 
should be stable. 
 
If the critical point corresponds to a maximum of potential energy (such as the upside-
down position of the pendulum in section 4.01), then the critical point should be unstable. 
 
 
If (0, 0) is an asymptotically stable critical point of the system 

 ( ) ( ), , ,dx dyf x y g x y
dt dt

= =  (3) 

then there must exist some domain D, containing (0, 0), such that all solutions in D must 
approach (0, 0) as t → ∞. 
 
Suppose that an energy function  V(x, y)  exists such that  V(0, 0) = 0  and  V(x, y) > 0 
everywhere else in D.   Then, following any open orbit in D, V must decrease to zero as 
t → ∞.   The converse of these statements is more useful:  
If  V decreases to zero as t → ∞ on every trajectory in D, then every trajectory in D must 
approach the origin as t → ∞  and the origin is therefore asymptotically stable. 
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Definitions:  
 
Let  V(x, y)  be defined on some domain D  that contains the origin. 
 
V is positive definite on D if  V(0, 0) = 0 and  V(x, y) > 0  for all other points in D. 
V is negative definite on D if  V(0, 0) = 0 and  V(x, y) < 0  for all other points in D. 
 
V is positive semi-definite on D if  V(0, 0) = 0 and  V(x, y) ≥ 0  for all other points in D. 
V is negative semi-definite on D if  V(0, 0) = 0 and  V(x, y) ≤ 0  for all other points in D. 
 
 
A function  V(x, y)  is a Lyapunov function for the system   

 ( ) ( ), , ,dx dyf x y g x y
dt dt

= =  (3) 

if there exists some neighbourhood of the origin in which  
• V  is a differentiable function of x and y; 
• V > 0 except at the origin, where V = 0; and 

• For any solution (x(t), y(t)) of (3) there exists a to such that 0dV
dt

≤  for all t > to. 

 
Theorem:  
 
If  V(x, y) is a Lyapunov function for the system (3), then: 
 

If dV
dt

 is negative semidefinite, then (0, 0) is stable. 

If dV
dt

 is negative definite, then (0, 0) is asymptotically stable. 

If dV
dt

 is positive definite, then (0, 0) is unstable. 
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Also note that, by the chain rule and (3), 

( ) ( ), ,dV V dx V dy V Vf x y g x y
dt x dt y dt x y

∂ ∂ ∂ ∂
= + = ⋅ + ⋅

∂ ∂ ∂ ∂
 

and that 
dV V
dt

= T
K K
i∇  

where ˆV VV ˆ
x y

∂ ∂
= +

∂ ∂
i

K
∇ j  is the gradient vector of the scalar function V(x, y) and  

( ) ( )ˆ ˆ ˆ,dx dy ˆ,f x y g x y
dt dt

= + = +T i j i
K

j  is the tangent vector to the trajectory  

(x(t), y(t)). 
 

If dV
dt

 is negative definite, then the two vectors 

must point in directions more than 90° apart, 
everywhere in the region (except possibly at the 
origin).   But the gradient vector points in the 
direction of increasing V, at right angles to the 
contours  V = constant. 
 
V is positive definite, so its gradient vector 
points outward, away from the origin. 
Therefore the trajectories must point inward, everywhere in the region where V is positive 

definite and dV
dt

 is negative definite. 

 
 
 
 
The general quadratic function  

( ) 2 2,V x y ax b x y c y= + +  
is positive definite if and only if  a > 0  and  b2 – 4ac < 0  
and  
is negative definite if and only if  a < 0  and  b2 – 4ac < 0  
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Example 4.10.1    
 
The populations of a pair of competing species are modelled by the system  

( )

( )

1

0.75 0.5

dx x x y
dt
dy y y x
dt

= − −

= − −
 

Investigate the stability of the critical point at (0.5, 0.5). 
 
 
Transform the critical point to the origin with the change of coordinates  

w  =  x  –  0.5 ;  z  =  y  –  0.5 
The system becomes  

( ) ( ) ( )( )

( ) ( ) ( )( )

2

2

0.5 1 0.5 0.5 0.5 0.5

0.5 0.75 0.5 0.5 0.5 0.25 0.5 0.5

dw w w z w z w wz
dt
dz z z w w z
dt

= + − + − + = − − − −

= + − + − + = − − − −wz z
 

 
There are many possible choices for a Lyapunov function, among the simplest of which 
is  

V(w, z)  =  w2  +  z2 
V  is clearly positive definite:   V(0, 0) = 0  and  V(w, z) > 0 everywhere else. 
 
dV V dw V dz
dt w dt z dt

∂ ∂
= ⋅ + ⋅

∂ ∂
 

( ) ( )2 22 0.5 0.5 2 0.25 0.5 0.5w w z w wz z w z wz z= − − − − + − − − −  

( ) (2 2 3 2 21.5 2 2 2w wz z w w z wz z= − + + − + + + )3

)2

 

In the quadratic expression ,  a  =  c  =  –1  and  b  =  –1.5.  ( 2 1.5w wz z− + +

a < 0  and  b2 – 4ac < 0, so that ( )2 1.5w wz z− + + 2  is negative definite. 
 
The cubic terms can be of either sign, but sufficiently close to (w, z) = (0, 0) they will be 
negligible compared to the quadratic terms.   Therefore a region does exist around (0, 0) 

such that V is positive definite and dV
dt

 is negative definite.   The critical point must 

therefore be asymptotically stable. 
 
By using a more complicated Lyapunov function and obtaining bounds on where its 
derivative is negative definite, one can estimate how far the region of asymptotic stability 
extends around the critical point. 
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Example 4.10.1   (continued) 
 
Note that we can also investigate stability by finding the eigenvalues of the linear system 
that approximates the non-linear system near the critical point:  
 

0.5 0.5 0.5
0.25 0.5 0.5

x x
y y

− − −⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠

�
�

 

 
The characteristic equation is  
  ( ) ( ) ( )( )2det 0 0.5 0.5 0.25 0A Iλ λ− = ⇒ − − − − − =

( )20.5 0.125 0.5 0.125 0.5 0.125λ λ λ⇒ + = ⇒ + = ± ⇒ = − ±  
which is a real distinct negative pair. 
The critical point is therefore an asymptotically stable node. 
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