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Abstract—Side-channel attacks are proven to be efficient tools
in attacking cryptographic devices. Dynamic power has been used
as a source for many well-known side-channel attack algorithms.
As process technology size shrinks, the relative amount of
static power consumption increases accordingly, and reaches a
significant level in sub-100-nm chips, potentially changing the
nature of side-channel analysis. In this paper we propose a type
of template attack developed for static power analysis of block
ciphers. In addition to the original template distinguisher, the
attack is shown to work well using new distinguishers which are
faster to compute.

Keywords—side-channel attacks, static power, block ciphers,
light-weight ciphers, cryptographic devices.

I. INTRODUCTION

A side-channel attack is based on the assumption that
cryptographic circuits have some physical leakage related to
the actual functions of the circuits. For a cryptographic device,
the legitimate user provides inputs such as a plaintext and
a key, and this device computes the ciphertext as output.
Regarding this computation as the main channel, a device
can also leak information that can reveal its behavior during
computation, and such information, including power, heat,
timing, and electromagnetic field, is referred to as side-channel
leakage. The attacker can measure the side-channel leakage,
and guess the related information in the main channel. By this
means the attacker would be able to recover the input to the
device. Usually we assume that the ciphertext or both plaintext
and ciphertext are known to the attacker, and the key needs
to be determined in order to break the cipher. The attacker
would consider information from the main channel to see if it
has any statistical correlation with the side-channel leakage.

Side-channel attacks using power leakage, namely power
analysis, was first introduced in [1]. It is one of the major areas
of side-channel attack, and has been the focus of researchers
for many years. As the power analysis methods were ini-
tially proposed, they mainly focused on the dynamic behavior
when the internal state of circuits change. The total power
consumption of a chip consists of two parts, dynamic power
and static power. The static power is the power consumption
when there is no state change in the circuit. Assuming that the
power supply voltage is fixed, static power is proportional to
the current flowing into the circuit, also known as the static
current.

It is predicted by International Technology Roadmap for
Semiconductors (ITRS) that the static power consumption can

be significant in technologies in sizes of 90 nm and less
[2]. Additionally, with the shrinkage of technology size, the
increase in static power is more significant than the increase
in dynamic power, making static power a potential source for
power analysis. We will refer to the power analysis attacks
using static power as the measurement target as static power
analysis (also referred to as leakage power analysis in [3]).

Various researches have shown how to apply existing
power analysis algorithms to static power and the practicality
of static power analysis has been demonstrated in different
types of platforms from simulations of CMOS circuits to
Field Programmable Gate Arrays (FPGA). A differential power
analysis (DPA) [1] attack against the DES cipher using static
power leakage was performed in [4], successfully showing that
static power can give better attack results than dynamic power
in 180-nm technology. More recent publications mainly use
correlation power analysis (CPA) [5] as the attacking method.
The static power analysis of 90-nm and 65-nm devices was
considered by Alioto et. al. in [3], as well as the performance
of CPA using static power on cryptographic circuits. After
this, they further explored the effectiveness of static-power-
based CPA against circuits enhanced with countermeasures
for classical DPA attacks in [6]. The CPA in [3] and [6] are
performed in a CMOS simulation environment. Moradi applied
static-power-based CPA on real-world FPGA chips in [7], and
static power analysis is shown to be successful against some
masked AES S-box implementations.

In our paper, we apply template attacks [8] to static power
of simulated CMOS devices in 45-nm technology, which is
a more up-to-date environment. Our target devices are low
frequency devices using light-weight block ciphers. In practice,
these devices may include microcontrollers, RFID tags, and
smart cards. Block ciphers usually work in specific encryption
modes where the same key is repeatedly used in multiple
encryptions. In such scenarios we are able to get multiple
power traces for the same key in our attack process. Hence,
instead of the original distinguisher used in [8], we treat
different trace sets as different distributions and distinguish
between these distributions. We will compare the performance
of our distinguishers with the original one used in [8].

II. TEMPLATE ATTACK USING STATIC POWER ANALYSIS

A template attack consists of two phases: the profiling
phase and the attacking phase. Two devices, known as the
profiling device and the target device, are required for these
phases respectively. Similar to DPA and CPA, the target device



is the device that the attacker tries to break by recovering
the unknown key. Template attacks require a profiling device
which is similar to the target device which the attacker has
full access to. The attacker is able to modify the keys of this
device and create different templates. The steps of a template
attack using static power analysis are as follows [8]:

1) Use random plaintext input to generate mT traces for each
of the K possible subkeys using the profiling device. Hence
there are K sets of traces, each having mT traces of random
encryption. Let there be N measurement points in each
trace. For a static-power-based attack, only 1 measurement
is needed to represent the power consumption when the
input/output values are not changed at each different input
value. That is, only 2 measurements are needed in each
clock period, one when clock is high and the other when
clock is low.

2) Use statistical techniques to select n (n ≤ N) points-
of-interest (POIs) where the Gaussian distribution model
applies well. In a noise-free simulation environment some
of the measurement points may be highly correlated, which
would cause the covariance matrix in step 3 to be singular.
Principle component analysis [9] can be applied in this step
to address this issue. Otherwise we could diagonalize the
covariance matrix in step 3, by which we manually remove
any possible correlation between the measurement points.
This option addresses the issue of singularity at the cost
of removing all the information about the relation between
different measurement points.

3) Apply the multivariate Gaussian model to each of the K
sets of traces separately. That is, regarding each POI as
a univariate Gaussian variable, the vector of all POIs is
regarded as a multivariate Gaussian distribution. For each
possible subkey k ∈ [0,K−1], let the trace vector generated
using subkey k be tk,i, 1 ≤ i ≤ mT . Note that the traces
only contain chosen POIs now. Compute the mean vector
tk and covariance matrix Σk as follows:

tk =
1

mT

mT∑
i=1

tk,i, (1)

Σk =
1

mT − 1

mT∑
i=1

(tk,i − tk)(tk,i − tk)
T . (2)

Here tk and Σk are referred to as template parameters.
The probability density function (PDF) for this multivariate
Gaussian distribution is

f(t|tk,Σk) = 1/
(√

(2π)n|Σk|
)
·

exp

(
−1

2
(t− tk)

TΣ−1k (t− tk)

)
. (3)

4) Generate a set of mA traces from the target device by
performing the same operation as the profiling device using
random plaintexts and an unknown subkey. The measure-
ment points and the POIs are also chosen to be the same as
those in the profiling phase. Given trace t′i (1 ≤ i ≤ mA)
in the trace set, the probability that this trace is derived
from subkey k, according to Bayes’ rule, follows

Pr(k|t′i) ∝ f(t′i|tk,Σk). (4)

Hence f(t′i|tk,Σk) is defined as the likelihood that t′i
is generated using k. Using Equation (4), we rank the
likelihood computation result for all the subkeys. The
subkey with the highest likelihood is assumed to be the
correct key used in the target device.

Steps 1-3 are defined as the profiling phase, while step 4
is defined as the attack phase.

The original proposal in [8] uses 1 attacking trace to
perform a template attack. In our scenario when targeted at
block ciphers we are able to acquire multiple attacking traces.
Since all the traces are acquired independently, we define the
overall likelihood given all the traces as

Pr(k|{t′i : 1 ≤ i ≤ mA}) =
mA∏
i=1

Pr(k|t′i) (5)

III. NEW DISTINGUISHERS FOR PROFILED ATTACKS

Knowing two random variables P and Q that follow some
unspecified distributions, the purpose of distinguishers is to
identify how much they differ from each other. We propose
to use the distinguishers that use only the parameters such as
mean and covariance to distinguish between different distri-
butions. For practical purposes, if there are multiple attacking
traces, the attacker would not have to compute Equation (4)
for each single attacking trace. Instead, the attacker would only
need to generate the mean and covariance for the attacking set,
and compute the distinguishers once for each template.

Regarding each set of template traces and the attack traces
as a distribution, there are in total K + 1 distributions. In the
static-power-based template attack, different statistical metrics
can be used as the distinguisher to evaluate the difference
between the distribution of attack traces and the distribution
of template traces. Here we show two distinguishers we use
in our experiment:

• Kullback-Leibler divergence (KL divergence) [10], also
called relative entropy, is defined as

DKL(P ||Q) =

∫
x

p(x) log
p(x)

q(x)
, (6)

here p(·) and q(·) represent the PDF of distributions P and
Q respectively.

• Jensen-Shannon distance (JS distance) [11], which is based
on the definition of KL divergence, is defined as

DJS(P ||Q) =

√
1

2
DKL(P ||M) +

1

2
DKL(Q||M), (7)

where M is a Gaussian mixture of P and Q.

Now we apply KL divergence and JS distance to multivari-
ate Gaussian distribution, which is used by template attack to
describe the distribution of POIs. Letting P and Q be two
multi-dimensional vectors that satisfy multivariate Gaussian
distribution, and M be a Gaussian mixture of P and Q, there is
no closed form expression for DKL(P||M) and DKL(Q||M)
[12]. The mean vector and covariance matrix of M needs to be



approximated in order to compute the KL divergence between
M and P and between M and Q. Here we compute the mean
vector and the covariance matrix for M as:

M =
1

2
(P + Q), (8)

ΣM =
1

2
ΣP(P−M)(P−M)T +

1

2
ΣQ(Q−M)(Q−M)T .

(9)

The approximation method we use here is simple and
quick to compute, but this method does not guarantee the best
approximation result. Other alternatives are also provided in
[13].

For multivariate Gaussians, the KL divergence is [14]:

DKL(P||Q) =
1

2

(
tr(Σ−1Q ΣP)− n+ log

|ΣQ|
|ΣP|

+(Q−P)TΣ−1Q (Q−P)
)
. (10)

Here tr(·) is the trace of the matrix, which is defined as
the sum along diagonals of the matrix, and n is the dimension
of the covariance matrices ΣP and ΣQ, which is the number
of POIs. Similar to the univariate Gaussian distribution case,
the JS distance can also be computed using Equation (7).

As another approach, in order to add the symmetric prop-
erty to KL divergence in our experiment, we use the average
of two KL divergences, also known as the Jeffreys divergence
or J-divergence [15], which is

DJ(P||Q) =
1

2
(DKL(P||Q) +DKL(Q||P)). (11)

Note that since we are treating the attack set and template
sets as distributions, there are also other distinguishers that can
be used to compare the likelihood of distributions. We leave
this as potential future work.

IV. EXPERIMENTAL RESULTS

In order to explore the application of template attacks on
the static power leakage of cryptographic circuits, we have
created simple circuits for study in 45-nm CMOS. Our circuits
are implemented using RTL level Verilog with the synthesis
and layout performed using the FreePDK 45nm library [16].
The generated netlists are imported into the Virtuoso environ-
ment to perform transistor level simulation. The clock period
of our target circuits is set to be 200 ns. The current at the
power input pin is measured as it is proportional to the power
consumption. In simulation, the current sharply changes when
the input values change, since at this time the dynamic power
is dominant. After this the current trace would slowly approach
Istatic, representing at when the static power is dominant.
Figure 1 illustrates this process. In practice we wait for a
period of time which is long enough so that the contribution of
dynamic power can be ignored, hence the measurement result
is close enough to Istatic. In our case, we wait for 90 ns after
the clock values change.
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Fig. 1. An illustration of current behavior after input value changes.

Our first attack target is a simple 4-bit toy cipher which
consists of an S-box from the cipher PRESENT [17] and a
4-bit XOR operation. The structure of this cipher is shown in
Figure 2.
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Fig. 2. Structure of a simple toy cipher.

In this circuit, the encryption is done in 1 clock period,
so 2 POIs (one for the clock high and the other for the clock
low) are enough for static power analysis. In order to perform
a template attack on this circuit, we profiled 16 template
sets using 16 different key guesses. For each key guess, we
profiled using different sets of 50 random plaintext inputs.
Next, assuming that we attacked on key 0100 (4 in decimal),
we used this key to encrypt another set of 50 random plaintext
inputs. The result of this attack is shown in Figure 3. All of
the three distinguishers gain successful results as key 4 has
the lowest JS distance and J-divergence, as well as highest
Gaussian likelihood.

We also performed this attack using 1000 traces for the
template and attack sets to verify the computation time of the
distinguishers. Using Python with the Intel Math Kernel library
on a computer with i7-4790 CPU, we are able to achieve our
results in an elapsed time of around 0.023 s for J-divergence,
0.052 s for JS distance, and 0.599 s for Gaussian likelihood.

Next, we performed our attack on a simplified key schedule
circuit of the PRESENT cipher. The structure of this circuit is
proposed in [18]. We reduced the key size to 24 bits, and the
number of rounds to 2. The 24 key bits are separated into 6
4-bit key nibbles, and we attack on the first key nibble loaded
in the key register. We also used a 4-bit state register to store
plaintext inputs, and this component adds noise to the power
consumption of the key schedule circuit. We performed our
attack following a similar attack process that we applied to
the toy cipher. The difference is that in this attack we try to
recover the Hamming weight of the correct key. Registers are
the major source for power consumption in this circuit, and
as is shown in [3], the static power consumption of registers
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(a) JS distance
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(b) J-divergence
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(c) Gaussian likelihood

Fig. 3. Template attack results on key 0100 using 50 traces for template and
50 traces for attack.

follow the Hamming weight model, thereby making it difficult
to distinguish between keys of the same Hamming weight.

We performed 16 attacks using a different correct key
nibble (from 0000 to 1111) for each attack. We used the
same number of traces used for profiling and attacking, and
this number range from 2 to 128. Then we used the success
rate defined in [19] to evaluate the result of our attacks.
The result of this attack is shown in Figure 4. The success
rates using different distinguishers increase as the number
of traces increases, and approaches 100% with less than 60
traces. As is shown the new distinguishers gain the same
level of performance as the Gaussian distinguisher. Using 128
traces for profiling and 128 traces for attack, the time for a
single attack is around 0.019 s for J-divergence, 0.030 s for JS
distance, and 0.051 s for Gaussian likelihood.
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Fig. 4. Success rate of template attacks on the key schedule circuit. The
success rate is the number of successful attacks in all the 16 attacks.

V. CONCLUSION

In this paper we extend the practicability of profiled
side-channel attacks to static power consumption, and we
have gained success in attacks against block cipher circuits
simulated in 45-nm CMOS environment. We also introduce
a set of new distinguishers to template attacks against block

ciphers, which can achieve the same level of performance as
the original distinguisher using less computing time.
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