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Abstract

In this paper, we examine the cryptographic secu-
rity of the CAST-256 symmetric block encryption al-
gorithm. The CAST-256 cipher has been proposed as a
candidate for the Advanced Encryption Standard cur-
rently under consideration by the U.S. National Insti-
tute of Standards and Technology (NIST). It has been
designed for a 128-bit block size and variable key sizes
of up to 256 bits to swit AES requirements. In this pa-
per, we specifically consider the cryptographic security
of the cipher in relation to the cryptanalytic property
of diffusion and the cryptanalysis techniques of linear
and differential cryptanalysis.

1 Introduction

The CAST-256 [1] cipher is a new symmetric block
cipher with a 128-bit block size and has been sub-
mitted as a candidate for the Advanced Encryption
Standard (AES) [2]. The design of CAST-256 was de-
rived from the CAST-128 cipher [3], a 64-bit block
cipher, and benefits from the results of analysis of this
earlier cipher [4]. Due to the relatively large block
size requirement of AES, it was necessary to modify
the architecture of CAST-256 from the classical Feistel
structure used in CAST-128. This has an impact on
the diffusion properties of the cipher and the resistance
of the cipher to the typical cryptanalysis techniques
applied to block ciphers. It is these characteristics of
CAST-256 that we specifically consider in this paper.

The AES process, which began in 1997 by NIST,
is an important development in the field of symmetric
cryptography with the eventual outcome being the se-
lection of a new block cipher to replace the aging Data
Encryption Standard (DES) [5]. It is anticipated that
the selected cipher will become widespread in its ap-
plication, eventually becoming the standard for use
in environments from banking machines to Internet
email. It is critical that the selected cipher be efficient
and that the general cryptographic community have
confidence in its security. The AES process is cur-
rently in the first phase, with 15 accepted candidates
available for public scrutiny. CAST-256 is one of these
candidates.

Two of the most important cryptographic criteria
of a block cipher are resistance to linear cryptanaly-
sis [6] and resistance to differential cryptanalysis [7].
Both of these attacks have been identified in recent
years as effective techniques for breaking large classes
of symmetric ciphers.

2 CAST-256 Architecture

CAST-256 is an iterative product cipher consisting
of 48 rounds or 12 quad-rounds of mixing, providing
“confusion” and “diffusion” of data bits and key bits.
The complete cipher is described thoroughly in [1]. In
this section, we provide enough details of the cipher
for the purposes of the discussion in this paper. Fig-
ure 1 illustrates the basic structure of one round of
the CAST-256 cipher. The 128-bit input block to the
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Figure 1: CAST Round Data Flow

round may be divided into four 32-bit words labelled
Ain, Bin, Cin, and D;,. Word C}, is modified by a bit-
wise exclusive-OR with the output of round function
f which has word D;,, as input. The corresponding
four output words - Aoui, Bouts Cout, and Dy - are
then derived by rotating the words to the right by one
position. This description applies specifically to the
rounds in the first half of the cipher (i.e., the first 24
rounds). For the 2nd half of the cipher, the rotation
in a round becomes a rotation of one word position to
the left, rather than the right.

The inherent security of the CAST-256 cipher (as
for all iterative block ciphers) is dependent on the
round function. The CAST-256 cipher round function
is directly based on the CAST-128 round function and
is illustrated in Figure 2. The function S;, 1 < j < 4,
is a nonlinear 8 X 32 mapping and is referred to as an
S-box. Due to their nonlinear nature, the S-boxes in
CAST are an integral component of cipher security.

The operations “b”, “c”, and “d” are referred to as
combining operations and represent the combination
of two 32-bit words. In CAST, these operations can
be bit-wise exclusive-OR, addition modulo-232, and
subtraction modulo-232. Operation “a” in CAST con-
sists of combining two 32-bit words (one data, one key)
using one of the 3 operations, followed by a rotation
dependent on 5 bits of subkey. The round functions of
CAST-256 vary between rounds, in that the combining
operations used for “a”, “b”, “c”, and “d” differ [1].
Mathematically, a typical round function is

W = ((Kmi + X;) <<< Ky
Y: = ((51[Wh] @ S2[Wa]) (1)
+85[Ws]) — Sa[Wa]

where X; represents the 32-bit input to the round
function, S; represents S-box j, W; represents the 8-
bit input to S-box j (the j-th byte of W), K,,; and K,;
represent the i-th round masking and rotation sub-
keys, respectively, Y; represents the 32-bit output of
the round function, and “@”, “4”, and “—” represent

32-bit datainput \

G\ subkey
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Figure 2: CAST Round Function

the operations exclusive-OR, addition, and subtrac-
tion, respectively. The notation “V <<< U” repre-
sents a left rotation of word V by U (i.e., as determined
by the least signficant 5-bits of U). Note that W, X;,
Y:, and K,,; all represent 32-bit words. The vector
K,; is 5 bits in length. The values of subkeys K,,; and
K,i, 1 <1 < 48, are determined by a key scheduling
algorithm as described in [1]. Decryption is achieved
similarly to encryption, with the only changes required
being the reversal of the application of the subkeys.

3 Diffusion Properties

An important cryptographic criterion of a cipher
is non-degeneracy: the property that all output bits
are dependent on all input bits, and vice versa. The
spread of the influence of input bits to output bits is
referred to as diffusion. In this section, we show that
the diffusion properties of CAST-256 result in non-
degeneracy in the cipher after 7 rounds (or less than 2
quad-rounds) in both the encryption and decryption
directions. (We shall consider encryption only, and
decryption follows similarly.)

We base our analysis on the assumptions that
a round function is non-degenerate and that non-
degeneracy for a bit is not cancelled through either
the round function or the exclusive-OR function in
the cipher architecture. Non-degeneracy in the round
function is intuitively extremely likely since each S-



Round Dependencies
1 Py (Py)
2 P2 (Pg,P4)
3 P, (P,,P3,F,)
4 P4 (P],Pz,Pg,P4)
3 P; (Py,P,,Ps,P,)
6 P, (Py,P,,Ps3,Fy)
7 P, (P,,P,,P3,Py)

Table 1: Dependencies Following Cipher Rounds

box is known to be non-degenerate. We note, however,
that the exclusive-OR operation is not non-degenerate
as only one bit from each word influences an output
bit. Hence, the critical notion in considering the diffu-
sion properties of CAST-256 is that output word D,
of a round is influenced by all bits that are input to
the round function (i.e., input word D;,,) since all out-
puts of the round function are dependent on all inputs
to the round function. However, it does not become
non-degenerate in input word C},, and all other output
words have no diffusion associated with them.

Given this, we can construct Table 1, illustrating
the dependencies of the cipher data at the output of
the indicated rounds. We represent the four 32-bit in-
put words corresponding to the 128-bit plaintext block
by Py, Py, P3, and P,, corresponding to the inputs
Ain, Bin, Cin, and D;,, respectively, of the first round.
In the Dependencies column, the unbracketed letter
represents the block affected by the round function
and the bracketed letters represent the blocks which
now influence the affected block (i.e., the blocks which
influence input bits to the round function).

The table indicates that after one round, the bits
corresponding to the plaintext word Ps are now non-
degenerate in the bits of plaintext word P;. Similarly,
after two rounds, the word corresponding to P» is non-
degenerate in the bits of Py and P;. This continues
so that after 4 rounds (or one quad-round), the word
corresponding to plaintext word Py is influenced by
all the bits of all plaintext words. After 7 rounds the
complete dependency of the output bits on the input
bits has been achieved since all four words, Py, Ps, P3,
and Py, are influenced by all bits of the plaintext.

4 Resistance to Linear Cryptanalysis

Linear cryptanalysis [6] attempts to exploit any
high-probability occurrences of linear (modulo-2) ex-

pressions of input, output, and round keys in the
round function of an iterated cipher. That is, the fun-
damental principle of linear cryptanalysis is to find a
linear approximation of the form:

P, eP, o - -8F,
®Cj, & Cj, & & Cj, (2)
=K, @Ky, ©--- D Ky,

where 21, 22, ..., tay J1, J24 -« Jb, and ki, ko, ..., ke
denote bit positions of the plaintext P, ciphertext C',
and key K, respectively.

It has been estimated [6] that the best linear ex-
pression for r-rounds of a cipher has a probability of
being satisfied that is bounded as follows:

1 1.
pr =51 <27 g = 5 (3)

where pj; represents the probability that the linear
expression (2) holds, pg represents the probability of
the best linear approximation of any S-box, and «
represents the number of S-boxes involved in the lin-
ear approximation. The expression is based on the
assumption of independent round keys such that the
linear approximations of the S-boxes are independent.
Provable immunity to linear cryptanalysis strictly de-
pends on bounding the likelihood of an overall linear
expression (sometimes referred to as a “linear hull”)
rather than any particular construction of a linear ex-
pression based on a specific set of S-box inputs and
outputs for all rounds of the cipher. However, de-
termining linear hull probabilities is generally an in-
tractable problem in cipher analysis and, in this paper,
we consider therefore the building block of an overall
linear expression: the sequence of approximations of
the round functions (involving approximations of the
S-boxes) which result in the overall linear expression.

A basic linear attack typically uses a sequence of
linear approximations of the rounds to create an over-
all linear expression involving subsets of plaintext and
ciphertext bits. From this it is possible to derive the
equivalent of one key bit represented as the exclusive-
OR sum of a number of round key bits as shown in
(2). In this case, it is shown [6] that the number of
known plaintexts required is approximately

1
Ni =|pL - §|_2- (4)

It can be shown that the best linear approximation
has a probability given by

2m—1 - NLmin

1 -
Ips — 51 = — 5)



where m is the number of input bits to the S-box and
N Lypnin is the nonlinearity of the S-box [4]. For the
S-boxes of CAST-256, m = 8 and NL,,;, = 74. Fur-
thermore, for the CAST-256 cipher, the best linear
approximation appears to be constructed by approxi-
mating one round function for every 4th round. That
is, the best approximation involves 4 S-boxes every
4 rounds such that the linear approximation of the
round function for every 4th round involves only out-
put bits (i.e., the sum of some number of output bits
is a constant) of the four S-boxes of the approximated
round.

Since linear approximations are built using
exclusive-OR, the best linear approximation of a
round is based on the exclusive-OR of the one output
bit of each S-box which corresponds to the least signif-
icant bit in the combining operation. For any type of
combining operation (exclusive-OR, addition, or sub-
traction) this bit is determined by an exclusive-OR.
Hence, the linear expresssion used as an approxima-
tion to the S-box is simply Y; = 0 where Y] represents
the output bit of the S-box used as the least significant
bit in the combining operation.

In the approximation of the overall cipher, we shall
simplify the cipher by excluding the key-dependent ro-
tation operation. This is equivalent to assuming that
the cipher is keyed with the worst case scenario where
all rotation subkey values result in a rotation of zero
bits. In practice, this is highly unlikely and the ro-
tation operation will further add to the difficulties in
mounting linear crpytanalysis.

Now, based on the previous discussion, for an 7-
round linear approximation, a = r. For r = 48, using
N L in = T4, the number of known plaintexts required
in the basic linear cryptanalysis is approximately 222,
Note that this is almost equal to the total number
of plaintexts available (212®) and argues against the

practicality of a linear attack on this cipher.

Furthermore, Youssef, et al, [8] have proposed that
a more accurate bound on the number of plaintexts re-
quired for linear cryptanalysis of a CAST cipher can
be obtained by considering the combination of S-boxes
in the round function, rather than the individual S-
boxes. In particular, they compute the nonlinearity
of the composite 32 x 32 S-box when the individual
S-boxes are combined using exclusive-OR, an assump-
tion only applicable to the least significant bit in the
combining operations. Using this in place of NL,,;, in
the equations above and setting m = 32 and a = r/4
(since we approximate the round function of every 4th
round) yields a number of known plaintexts required
for a 48-round linear approximation at more than 2!

(far beyond the number of plaintexts available).

Note that experimental evidence suggests that com-
bining S-boxes using mixing operations such as addi-
tion or subtraction rather than exclusive-OR may in-
crease the nonlinearity of the composite S-box even
further. And this conjecture, in combination with the
difficulties arising from mounting a linear attack when
key-dependent rotations are used [3], provides an over-
whelming argument that it is completely impractical
to effectively cryptanalyze CAST-256 using a linear
attack.

5 Resistance to Differential Cryptanal-
ysis

Differential cryptanalysis [7] attempts to exploit
any high probability output differences resulting from
particular input differences in the round function of
an iterated cipher. A block cipher can be proven to
be resistant to differential cryptanalysis if it can be
shown that no high probability differentials exist [9],
where an r-round differential is defined to be the “dif-
ference” of two outputs after r rounds corresponding
to two plaintexts with a given “difference”. Gener-
ally, the most effective “differences” to consider are
the bit-wise exclusive-OR of two data blocks. !

In a good cipher the probability of all differen-
tials should approach 277, where N is the block
size. Strictly speaking, differential cryptanalysis re-
quires only the existence of a highly probable differen-
tial to succeed. However, differentials can be viewed
to be comprised of a number of possible character-
istics, where a characteristic specifies the exact se-
quence of input and output exclusive-ORs for each
round to achieve the overall differential input and out-
put exclusive-OR.

It is typically difficult to derive the probability of
any particular differential and, in practice, it would
be hard for a cryptanalyst to determine the existence
of a highly-probable differential without searching for
highly-probable characteristics. Although it is often
the case that an upper bound on the probability of
a differential cannot be stated for a particular cipher
(that is, immunity to differential cryptanalytis cannot

1 Although it is possible to consider other differences such
as the subtraction of one block from another block, there is
no compelling reason to consider such differences for CAST-
256. Hence, we shall focus on the more conventional exclusive-
OR difference. Note that the design of CAST-256 specifically
includes a mixing of the combining operations of exclusive-OR,
addition, and subtraction to minimize the effectiveness of using
any one particular definition of a difference.



be proven), the probabilities of the most likely char-
acteristics can be estimated. These probabilities can
then be used as a measure of the cipher’s resistance to
differential cryptanalysis.

As is common in the literature, the analysis here
is based on the assumptions (1) that all round keys
are independent and (2) that the occurrence of output
exclusive-ORs given particular input exclusive-ORs is
independent for different rounds. Under such condi-
tions, the probability of an r-round characteristic is
given by

Pa, = HPi (6)
i=1

where p; represents the probability of the output
exclusive-OR given the input exclusive-OR in round
1.

The best characteristics that can be constructed are
typically iterative in nature. For the CAST-256 cipher
with R rounds, the characteristic illustrated in Table 2
appears to be the best possible r-round iterative char-
acteristic based on iterating a 4-round characteristic.
Note that the notation (0,0,0, A) represents exclusive-
OR vectors for the four 32-bit words in a CAST-256
round input with the first 3 words (corresponding to
Ains Bin, and Cjy, in the round input) having all ze-
ros exclusive-OR differences and the 4th word (cor-
responding to D, in the round input) having some
non-zero exclusive-OR difference, represented by A.
Also note that, as in the discussion for linear crypt-
analysis, we assume the worst case scenario where the
rotation sub-keys result in no rotations in all rounds,
an extremely unlikely event.

For the characteristic illustrated for a general R-
round cipher, the input exclusive-OR to round R/2+1
will be a vector in which one of the sub-blocks is non-
zero and the other three sub-blocks are zero. (The pre-
cise variation that applies to a given cipher depends
on the value of R.) Without loss of generality, the
example for (0,0, 0,A) is shown in Table 2 and is suit-
able for the AES-defined version of CAST-256 with
R = 48.

The input exclusive-OR and output exclusive-OR
of every 4th round of the characteristic in Table 2
is of a format where a non-zero input exclusive-OR
leads to an all zero output exclusive-OR (as shown for
rounds 1, 5, etc.). As per the analysis and rationale
given in [4], the input-output exclusive-OR, pair for a
simplified CAST round function (i.e., one which does
not include the key-dependent rotation, and for which
the only S-box combining operation used is exclusive-
OR) can be assumed to have a probability of p < 2714,
This is based on the fact that all four S-boxes in the

(0,0,0,A) | [input XOR to round 1]
0—A [round 1]
00 [round 2]
00 [round 3]
00 [round 4]
(0,0,0,A) | [input XOR to round 5]
0 A [round 5]
00 [round 6]
00 [round 7]
00 [round §]
repeat up to R/2 rounds
(0,0,0,A) | [input XOR to round R/2 + 1]
0—A [round R/2 + 1]
00 [round R/2 + 2]
00 [round R/2 + 3]
00 [round R/2 + 4]
repeat up to r rounds

Table 2: Format of Best r-round Characteristic of an

R-round Cipher

CAST round function are injective and the format of
the exclusive-OR pair has the output exclusive-OR
being equal to 0. It can be shown that it may be
expected that a round function which uses combin-
ing operations such as addition and subtraction will
have a reduced probability associated with the most
likely input-output exclusive-OR pair of the round
function [10]. (Furthermore, experimental evidence
for the CAST-256 S-boxes strongly supports this an-
alytical work.) This leads to the conclusion that the
best r-round iterated characteristic, as shown in Ta-
ble 2 and based on the assumptions described above,
has a probability given by

pa, < (27H)7 (7)

In particular, a 40-round characteristic (which
could potentially be used to attack the 48 round ci-
pher) must have a probability less than or equal to
2710 according to the assumptions of the analysis.
This implies that the number of chosen plaintexts re-
quired for this attack would be greater than 240 for
the 48-round cipher (substantially greater than the
number of plaintexts available for a 128-bit block size).

The results of this analysis, plus the consideration
of the added difficulty in mounting a differential at-
tack when combining operations such as addition and
subtraction are used as well as exclusive-OR and key-
dependent rotations are also used [3], leads to the con-
clusion that the CAST-256 cipher appears to be im-



mune to differential cryptanalysis.

6 Conclusion

In this paper, we have investigated the security as-
pects of the CAST-256 block cipher, focussing specif-
ically on the diffusion properties and the resistance
of the cipher to linear and differential cryptanalysis.
The conclusions of the analysis show that, with re-
spect to these cipher properties, the cipher is secure.
Although it is not possible to state that any cipher has
guaranteed security, we believe the design philosophy
of CAST-256 is sound and have shown this is the case
for properties discussed in this paper.

To gain further confidence in the security of CAST-
256, many other cipher properties and cryptanalysis
methodologies could be analyzed for the cipher. These
could include properties such as the information theo-
retic characteristics of the cipher and attacks such as
related-key attacks, higher-order differential attacks,
and linear-differential attacks. As well, the analysis
of this paper could be improved upon by consider-
ing more accurately the effect of the combining oper-
ations of addition and subtraction and the use of the
key-dependent rotations in each round. However, we
conjecture that such a complete analysis is likely to
pose intractable problems.
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