
 AN ULTRA COMPACT BLOCK CIPHER FOR SERIALIZED ARCHITECTURE

IMPLEMENTATIONS

Cheng Wang and Howard M. Heys

Electrical and Computer Engineering

Memorial University of Newfoundland

St. John’s, Newfoundland, Canada

{cwang, howard}@engr.mun.ca

ABSTRACT

In this paper, we present a new block cipher, referred as

PUFFIN2, that is designed to be used with applications

requiring very low circuit area. PUFFIN2 is designed to be

implemented exclusively with CMOS technologies and in a

serialized architecture, so that the maximum reuse of

hardware components is achieved resulting in a very

compact implementation. PUFFIN2 has a block size of 64

bits and a key size of 80 bits. Compared with a serialized

implementation of cipher PRESENT, which has the same

block size and key size and is claimed as the smallest

practical block cipher implementation to date, our cipher has

16% fewer gates using the same CMOS technology. Further,

PUFFIN2 inherently supports both encryption and

decryption while the serialized PRESENT is an encryption-

only implementation.

Index Terms— cryptography, block cipher, ASIC,

hardware implementation

1. INTRODUCTION

Lightweight block cipher design is one of the recent trends

in symmetric key cryptography. This trend is motivated by

the wide variety of applications of compact embedded

devices (e.g. smart cards, RFID tags) and the huge market

demand for them at low price and low power consumption.

To cater to this trend, there has been quite a few proposals

dedicated to lightweight block cipher design and

implementation in recent years, and some of the

representative examples are PRESENT [1][2], HIGHT [3],

SEA [4], and PUFFIN [5]. Among the ASIC

implementations of these lightweight block ciphers,

PRESENT is the most compact encryption-only cipher and

PUFFIN is the smallest one capable of both encryption and

decryption operations.

It is well known that an efficient method to minimize

hardware area is to reuse the single piece of a hardware

component for multiple times instead of replicating identical

pieces for simultaneous operation. This hardware reduction

method, also known as a serialized architecture, is well

suited to block ciphers which usually involve cryptographic

components consisting of identical function blocks, e.g. non-

linear substitution layers generally consist of identical S-

boxes. Although this reduction of hardware area comes at

the penalty of increased execution time, the compromised

timing performance is still acceptable for many applications

at which lightweight block ciphers are targeted. The

serialized architecture is firstly exploited and applied to

PRESENT in [2] and this is the smallest known

implementation of a practical block cipher. In the reminder

of the paper, this implementation is called serialized

PRESENT.

PUFFIN2 is a block cipher named after its predecessor

PUFFIN and designed to be implemented exclusively with a

serialized architecture, and it is expected that PUFFIN2 is

more efficient than PRESENT for hardware implementation

with serialized architecture. The capability of both

encryption and decryption is another design goal of

PUFFIN2, and in the following it will be shown that the

datapath of PUFFIN2 is exactly same for encryption and

decryption, so there is no hardware overhead to

accommodate the difference between encryption and

decryption operations. PUFFIN2 has the same block size

and key size as PRESENT, 64-bit and 80-bit respectively.

Compared with the widely adopted 128-bit key size and

128-bit block size of AES [6], an 80-bit key size with a 64-

bit block size can result in a compact implementation and

still provide sufficient security for typical low cost smart

devices. Based on our ASIC implementation experiments,

PUFFIN2 is realized with 1083 gates which is 16% less than

the serialized PRESENT with 1296 gates.

2. CIPHER SPECIFICATION

The proposed block cipher PUFFIN2 adopts a simple

involutional substitution-permutation network (SPN) with a

data block size of 64 bits and key size of 80 bits and consists

of 34 rounds. The key schedule of the cipher generates 64-

bit round-keys for each round on-the-fly (that is, in parallel

to the processing of the cipher data). Encryption and

Table 1. S-box Mapping (in Hexadecimal) [5]

X 0 1 2 3 4 5 6 7

S(X) D 7 3 2 9 A C 1

X 8 9 A B C D E F

S(X) F 4 5 E 6 0 B 8

Table 2. 64-bit Permutation [5]

(input = row × 8 + column + 1)
 0 1 2 3 4 5 6 7

0 13 2 60 50 51 27 10 36

1 25 7 32 61 1 49 47 19

2 34 53 16 22 57 20 48 41

3 9 52 6 31 62 30 28 11

4 37 17 58 8 33 44 46 59

5 24 55 63 38 56 39 15 23

6 14 4 5 26 18 54 42 45

7 21 35 40 3 12 29 43 64

decryption processes are identical so the same datapath can

be used for both processes.

2.1. Basic components

Each round function of PUFFIN2 consists of 3 layers, a

nonlinear substitution layer S, a key addition layer A and a

permutation layer P. The nonlinear substitution layer S is

composed of 16 identical 4x4 S-boxes, which are the same

as the S-boxes used in PUFFIN and the S-box mapping is

shown in Table 1. 4x4 S-boxes (which are small compared

to the 8x8 S-boxes of AES) are often found in lightweight

block ciphers because their implementations are compact

and their comparative weakness in security strength can be

compensated by an increased number of rounds. The key

addition layer A performs a bitwise XOR with the 64-bit

data block and the 64-bit round-key provided by the key

schedule. The permutation layer P is a bit transposition of

the 64-bit data block. The permutation scheme of PUFFIN2

is borrowed from the 64-bit data block permutation of

PUFFIN which fulfills the criterion that no two outputs of a

4×4 S-box are connected to the same S-box in the next

round. The permutation scheme is listed in Table 2. As can

be seen from the tables, an important property that both the

S-box mapping and the permutation possess is that they are

involutions. A block cipher based on involutional function

components can hold identical encryption and decryption

processes, which is one of the design goals of PUFFIN2.

2.2. Encryption and decryption process

The encryption and decryption processes are shown in

Figure 1, where Kr denotes the r-th round-key and

K’r=P(Kr). The whole process consists of 34 rounds plus an

Figure 1. Block diagram of the encryption (top) and

decryption (bottom) processes

extra substitution layer. The explanation of selecting 34 as

the number of rounds is given in the next sub-section. The

extra substitution layer is required to form identical

encryption and decryption processes. For each round of the

encryption/decryption process, the 64-bit input data goes

through the substitution layer S, the permutation layer P and

then adds with the round key to generate the input of the

next round.

According to Figure 1, the encryption process of

PUFFIN2 can be represented as follows:

[] ()34

34 1 2 34 1
, ,...,

r Kr
K K K O S P A Sα

=
= � � � .

In the above expressions, the notation, “ � ”, means the

concatenation of the basic operation in one stage such as

substitution S and Permutation P. The notation “O” is used

to represent the concatenation of 34 rounds of operation of

()S P A� � . Decryption should be as follows:

[] ()1 1

34 1 2 34 34
, ,...,

r Kr
K K K S O A P Sα −

=
= � � �

 ()1

34r Kr
O S A P S

=
= � � � .

Because the substitution layer S and the permutation layer P

are involutional, we can have the following relationship:

()Kr P KrA P P A≡� � ,

and therefore, we can obtain the following:

[] ()1 1

34 1 2 34 34 (), ,..., r P KrK K K O S P A Sα −

== � � � .

The above expression is consistent with the decryption

process shown in Figure 1, which means the decryption

process is similar in form to the encryption process. In the

decryption process, the round-keys used in encryption are

permuted with P and applied in the reverse order.

2.3. Key schedule

The key schedule of PUFFIN2 operates on an 80-bit key and

generates a 64-bit key for each round on-the-fly. The

components used by the key schedule are listed in Table 3

and the key schedule is demonstrated in Figure 2. The key

schedule consists of 34 round functions plus an extra

substitution layer at the beginning. Each of the round

function is comprised of a permutation layer PL64 or PR64

Table 3. Description of the components of the key schedule

Component Function

S80 Substitution of the 80 bits

PL64 Permutation of the left 64 bits

PR64 Permutation of the right 64 bits

L64 Selection of the left 64 bits

R64 Selection of the right 64 bits

Table 4. Round distribution of PL64, PR64, L64 and R64

Round # Permutation Selection

1, 2,33,34r = PL64 L64

3, 4,31,32r = PR64 R64

5 4 ,0 6r n n= + ≤ ≤ PR64 R64

6 4 ,0 6r n n= + ≤ ≤ PR64 R64

7 4 ,0 5r n n= + ≤ ≤ PL64 L64

8 4 ,0 5r n n= + ≤ ≤ PL64 L64

and a substitution layer S80. PL64 or PR64 permutes the left

or right 64 bits of the 80-bit round input and then S80

performs the substitution on the 80 bits of key data.

Depending on the selection component L64 or R64, each 64-

bit round key is generated by taking the left or right 64 bits

of the 80-bit intermediate value that feeds to the

corresponding round function. The detailed distribution of

PL64 and PR64 along with L64 and R64 is shown in Table 4.

The irregular distribution of PL64 and PR64 for each round

is intended to prevent related-key attacks, and will be

discussed in Section 3.

In order to maximize hardware resource reuse to

achieve a compact implementation, the substitution

component S80 is designed to consist of 4x4 S-boxes that

are same as the S-box used in the encryption and decryption

processes, and the 64-bit permutation mapping in PL64 and

PR64 is also the same mapping as in the permutation layer in

the encryption and decryption process.

The key schedule of PUFFIN2 is designed to be

involutional to fulfill the design goal of a full involutional

block cipher. The involutional property is achieved through

the following measures. In the first place, all basic

components in the key schedule are involutional. Secondly,

the distribution of PL64 PR64 along with L64 and P64 is

symmetric, and in order to achieve this, the round number of

the key schedule has to be a number that is double of an odd

number and consequently 34 is selected as the round number

of the key schedule as well as the encryption and decryption

processes. As will be noted in Section 3, 34 rounds are also

adequate to achieve an appropriate level of security. Thirdly,

there is an extra substitution layer S80 at the beginning of

the key schedule which makes the forward path of round key

generation identical to its backward path. The PL64 and S80

in the last round (round 34) of the key schedule are only

useful to compute the decryption key corresponding to an

encryption key. By applying a decryption key to the key

schedule, the round keys would be generated in the reverse

order of that made by the encryption key. It is also necessary

Encrypt / Decrypt Key

S80

PL64

S80

L64K1/K’34

PL64

S80

L64K2/K’33

PR64

S80

L64K33/K’2

PL64

S80

L64K34/K’1

PL64

S80

Decrypt / Encrypt Key’

80

8064

80

Round 1

Round 2

Round 32

Round 33

PR64

S80

R64K3/K’32
Round 3

Round 34

Figure 2. Block diagram of the key schedule

to note that the round keys generated for decryption are

permuted version of the round keys used in encryption, and

this feature is required to provide the correct decryption

round keys for the decryption process mentioned in the last

sub-section.

3. SECURITY ANALYSIS

In this section, we analyze the security strength of PUFFIN2

under differential and linear cryptanalysis and two major key

schedule attacks.

3.1. Differential and linear cryptanalysis

Our proposed block cipher PUFFIN2 shares the same S-box

and permutation mapping in encryption and decryption

process as PUFFIN, so the differential and linear

cryptanalysis results of PUFFIN2 can be easily derived from

that of PUFFIN in [5].

For differential cryptanalysis [7], the maximum

differential characteristic probability of the S-box is ,

and based on the 4x4 S-boxes and the involutional

permutation each round has at least one active S-box to form

the path for a differential characteristic. Hence, the upper

bound of the differential probability over 32 rounds is given

by:
32 642p pδ

−

Ω
≤ = .

1 / 4pδ =

The differential probability indicates that about 642

plaintexts would be required to mount a successful attack,

the complexity of which is close to a brute force attack on a

64-bit cipher. Therefore, it is reasonable to consider

PUFFIN2 to be enough resistant to differential cryptanalysis.

For linear cryptanalysis [8], the maximum linear

approximation probability bias of the S-box is .

Similar to the case in differential cryptanalysis, there is at

least one active S-box involved in each round to form a

linear approximation. Hence, the upper bound of the linear

approximation bias of 32 rounds is calculated with the

piling-up lemma [8] as follows:
3231 332 2

L S
ε ε −≤ = .

According to [8], the number of the known plaintexts

required to perform linear cryptanalysis is proportional to

, which means an effective attack on PUFFIN2 with

linear cryptanalysis requires about known plaintexts and

therefore is considered to be an impractical attack.

3.2. Related-key attacks

The related-key attack was proposed in [9]. It exploits the

regularity of the relationships between key schedule rounds

and uses the chosen key relations to retrieve the secret key

information. The related-key attack generally finds its

application on those block ciphers that use the same

algorithm to generate round keys for all the rounds. It is easy

to see that our block cipher does not have this regularity

property in the key schedule because the permutation layers

PL64 and PR64 are not regularly distributed among rounds,

and hence it is resistant to the related-key attack.

3.3. Weak keys

Weak keys [10] are keys that make the key schedule produce

identical round keys for all or some of the rounds. For the

key schedule of PUFFIN2, due to the existence of non-linear

substitution layers, we do not find any weak key in the key

space.

4. SERIALIZED ARCHITECTURE FOR HARDWARE

IMPLEMENTATION

The proposed block cipher PUFFIN2 is designed to be

efficiently implemented with a serialized hardware

architecture. A serialized architecture is the architecture

where multiple identical hardware components that work for

multiple tasks simultaneously are mapped to one piece of the

hardware component that works for the multiple tasks in

series. Generally, a serialized architecture can lead to the

minimal hardware implementation among a variety of

implementation architectures. In this section, we introduce a

serialized architecture for which the proposed block cipher

PUFFIN2 is well suited in and that results in an ultra

.

[61:64] [77:80] [1:140][141:144]

0 1

S

[1:4] [5:144]

144-bit

Register

A0000

P

[81:144][1:80]

0 1

4 4 1404 144

4

6480

[1:80] [81:144]

Ciphertext

/Plaintext 4

144

Plaintext

/Ciphertext

+Key

4

Figure 3. Serialized architecture of PUFFIN2

compact implementation.

The serialized architecture for PUFFIN2 is shown in

Figure 3. This architecture is constructed with two 4-bit 2-

to-1 multiplexers, a 64-bit 2-to-1 multiplexer, a 4-bit XOR

adder “A”, a 4x4 S-box “S”, a 64-bit permutation “P”, and a

144-bit register. The architecture conceives a 144-bit wide

datapath and the hardware components operate on the

datapath.

It is also worthy to mention that there is a 4-bit rotation

structure on the datapath, which is crucial to ensure the

hardware resources are shared properly in series and the

block cipher algorithm is running correctly in the

architecture. The 4-bit rotation structure is realized by

crossover wiring that maps bits 1 to 140 to bits 5 to 144 and

bits 141 to 144 to bits 1 to 4 (through the adder “A” and the

S-box “S”).

The 4-bit 2-to-1 multiplexer with a dashed 4-bit zero

input in Figure 3 is called the first 4-bit multiplexer and the

other one is called the second 4-bit multiplexer. The first 4-

bit multiplexer is capable to output a zero vector

independent of its two inputs, and this is achieved by

ANDing the 4-bit output of the multiplexer with a signal bit

from the controller.

In the following, we describe the work flow of the

serialized architecture with the example of plaintext and key

loading procedure and the first round of the encryption

process. We call the bits that carry plaintext information and

key information during the encryption process as internal

plaintext bits and internal key bits, respectively. A 64-bit

plaintext plus an 80-bit encryption key is loaded in units of 4

bits through the first 4-bit multiplexer to the datapath. The

first 4-bit unit is presented to the input of the 144-bit register

in the 1
st
 clock cycle and becomes available at the output of

pΩ

1 / 4Sε =

21 /
L

ε

662

Lε

Figure 4. Contents of the 144-bit register at clock cycles 6,

37, 45, 53 and 57

the register in the 2
nd

 clock cycle. Each subsequent 4-bit unit

is added with a 4-bit zero vector and then fed through the S-

box before being stored in the 144-bit register. The 4-bit

zero vector is generated by the initial output of the 144-bit

register. The 4-bit rotation structure makes sure each 4-bit

unit is added with a 4-bit zero vector and stored in the

register bits next to the last 4-bit unit. The loading procedure

of the plaintext plus the key takes 36 clock cycles and during

this period the first substitution layers in the encryption

process and key schedule are also performed. In the 37
th

clock cycle, the 64-bit internal plaintext bits are permuted

with the 64-bit permutation by selecting position 1 of the 64-

bit 2-to-1 multiplexer, and then the right most 4 bits of the

updated internal plaintext bits are added with the right most

4 bits of the left 64 bits of the internal key bits by selecting

position 0 of the second 4-bit multiplexer. It takes 16 clock

cycles to complete the key addition of 64 bits and ends at the

52
nd

 clock cycle. In the 53
rd

 cycle, the right-most 4 bits of

the 80-bit internal key bits are added with a 4-bit zero vector

in A and then substituted by the S-box. In the 57
th

 cycle, the

left 64 bits of the 80-bit internal key bits are permuted with

the 64-bit permutation. In order to better demonstrate the

work of the architecture, the contents of the 144-bit register

at clock cycles 6, 37, 45, 53 and 57 are shown in Figure 4

(a), (b), (c), (d) and (e), respectively. The dotted 4-bit block

in Figure 4 (b) is the 4 bits used to be added with the right

most 4 bits of the internal plaintext (after the permutation) in

the 37
th

 cycle.

The 64-bit internal plaintext bits and the 80-bit internal

key bits are rotated within the 144-bit register and it takes 36

cycles to complete a full rotation. The period of 36 cycles is

also the time to complete a round of the

encryption/decryption process. Hence, the total time to

complete the entire encryption/decryption including the 16

cycles for the initial loading of the plaintext is given by:

Table 5. Implementation results of PUFFIN2 and serialized

PRESENT

Area

(GEs)

Maximum

Frequency
Cycles

Throughput

@100KHz

PUFFIN2 1083 326.8MHz 1240 5.2Kbps

Serialized

PRESENT
1296 346.0MHz 563 11.4Kbps

(16 36 34) 1240cc cc+ × = ,

where cc represents one clock cycle.

5. HARDWARE IMPLEMENTATION RESULTS

The block cipher PUFFIN2 with the serialized architecture

has been implemented and synthesized with the 0.18-µm

CMOS standard cell library from TSMC available through

CMC Microsystems [11]. Synopsys Design Compiler

version X-2005.09 has been used as our synthesis tool. We

also implemented the serialized PRESENT from [2] which is

claimed as the smallest implementation of a block cipher

with 64-bit block size. Both of the implementations are

datapath-only implementations, which means their

controllers are not included in the implementations, and in

both cases the controllers are negligible because they can be

realized with a small counter and a small amount of

combinational logic. Our implementation results of

PUFFIN2 and the serialized PRESENT are shown in Table

5. In the table, the metric of gate equivalents (GEs) is used,

where a unit of 1 GE represents an area equivalent to a 2-

input NAND gate.

According to Table 5, the implementation of PUFFIN2

is 16% smaller than the serialized PRESENT

implementation. As a trade-off PUFFIN2 takes almost

double the time of the serialized PRESENT to process the

same amount of data. In most lightweight applications, a

large running time is not a serious issue.

It is necessary to point out that the gate count of the

serialized PRESENT implementation claimed in [2] is 1075

GE. The 221 GE overhead of our implementation of the

serialized PRESENT could be caused by the different

synthesis library and the use of scan flip flops with

integrated multiplexers in [2] instead of the normal flip flops

and separated multiplexers found in our implementation.

The same area reduction effect can be achieved in our

implementation of PUFFIN2 with scan flip flops as long as

the 144-bit register is moved to the output of the 64-bit 2-to-

1 multiplexer to form the integrated flip flops and

multiplexers. The position of the 144-bit register is flexible

in the serialized architecture, so this change would not have

any influence on the functionality.

In order to have a clear comparison between the

hardware complexity of PUFFIN2 and the serialized

PRESENT, we list the count of the hardware components

required for both implementations in Table 6. The 144-bit

register in PUFFIN2 is divided into a 64-bit register and

Table 6. Count of hardware components of PUFFIN2 and

serialized PRESENT

Components PUFFIN2
Serialized

PRESENT

64-bit register

(384 GE)
1 (35.5%) 1 (29.6%)

80-bit register

(480 GE)
1 (44.3%) 1 (37.0%)

64-bit 2-to-1 multiplexer

(153 GE)
1 (14.1%) 1 (11.8%)

80-bit 2-to-1 multiplexer

(192 GE)
0 1 (14.8%)

4-bit 2-to-1 multiplexer

(10 GE)
2 (1.8%) 3 (2.3%)

4x4 S-box*

(30 GE / 32GE)
1 (2.8%) 1 (2.5%)

4-bit XOR adder

(11 GE)
1 (1.0%) 1 (0.9%)

5-bit XOR adder

(14 GE)
0 1 (1.1%)

4 2-input AND gates

(5 GE)
1 (0.5%) 0

Total gate count
1083 GE

(100%)

1296 GE

(100%)

* PUFFIN2 and the serialized PRESENT use different S-boxes

with slightly different area.

an 80-bit register in Table 6, and the 36 4-bit 2-to-1

multiplexers in the two shift registers of the serialized

PRESENT are merged and shown as a 64-bit 2-to-1

multiplexer and an 80-bit 2-to-1 multiplexer in Table 6.

From Table 6, we can see the major area difference

between PUFFIN2 and the serialized PRESENT comes from

the 80-bit 2-to-1 multiplexer, which accounts for 14.8% of

the total area of the serialized PRESENT and does not exist

in PUFFIN2. It is also noticeable in Table 6 that the 144-bit

register takes 80% of the hardware resource of PUFFIN2,

and this fact allows us to believe that the serialized

implementation of PUFFIN2 has approached the area limit

of the block ciphers that have similar block size and key size.

6. CONCLUSION

In this paper we have proposed a new block cipher

PUFFIN2 based on an involutional SPN structure. The

cipher with a 64-bit block size and an 80-bit key size can

provide sufficient security for low cost embedded devices

and support both encryption and decryption. We also

introduced a serialized architecture based on which

PUFFIN2 can be implemented with an ultra compact size.

Compared with the serialized PRESENT implementation,

the datapath of PUFFIN2 uses 16% fewer gates. In general,

the PUFFIN2 block cipher is a secure, area-efficient

structure in comparison to other proposed compact block

ciphers.

7. ACKNOWLEDGEMENTS

This work was funded by the Natural Sciences and

Engineering Research Council of Canada (NSERC) and

facilitated by tools provided by CMC Microsystems.

8. REFERENCES

[1] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A.

Poschmann, M.J.B. Robshaw, Y. Seurin, and C. Vikkelsoe,

“PRESENT: An Ultra-Lightweight Block Cipher,” Cryptographic

Hardware and Embedded Systems (CHES 2007), Springer-Verlag,

LNCS 4727, pp. 450-466, 2007.

[2] C. Rolfes, A. Poschmann, G. Leander, and C. Paar, “Ultra-

Lightweight Implementations for Smart Devices – Security for

1000 Gate Equivalents,” Smart Card Research and Advanced

Application Conference (CARDIS 2008), Springer-Verlag, LNCS

5189, pp. 89–103, 2008.

[3] D. Hong, et al., “HIGHT: A New Block Cipher Suitable for

Low Resource Device,” Cryptographic Hardware and Embedded

Systems (CHES 2006), Spring-Verlag, LNCS 4249, pp. 46-59,

2006.

[4] F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater,

“SEA: A Scalable Encryption Algorithm for Small Embedded

Applications,” Smart Card Research and Applications (CARDIS

2006), Springer-Verlag, LNCS 3928, pp. 222–236, 2006.

[5] H. Cheng, H.M. Heys, C. Wang, “PUFFIN: A Novel Compact

Block Cipher Targeted to Embedded Digital Systems,” 11th

Euromicro Conference on Digital System Design Architectures,

Methods and Tools (DSD 2008), 2008.

[6] National Institute of Standards and Technology (NIST),

“Advanced Encryption Standard (AES),” Federal Information

Processing Standard (FIPS) 197, Nov. 2001.

[7] E. Biham and A. Shamir, “Differential Cryptanalysis of DES-

like Cryptosystems,” Advances in Cryptology: CRYPTO’90,

Springer-Verlag, LNCS 537, pp. 2-21, 1991.

[8] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,”

Advances in Cryptology: EUROCRYPT '93, Springer-Verlag,

LNCS 765, pp. 386-397, 1994.

[9] E. Biham, “New Type of Cryptanalysis Attacks Using Related

Keys,” Advances in Cryptology: EUROCRYPT '93, Springer-

Verlag, LNCS 765, pp. 229-246, 1994.

[10] J. H. Moore, and G. J. Simmons, “Cycle Structure of the DES

for Keys Having Palindromic (or Antipalindromic) Sequences of

Round Keys,” IEEE Transactions on Software Engineering, vol.

SE-13, no. 2, pp. 262-273, 1987.

[11] CMC Microsystems, www.cmc.ca

