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ABSTRACT 

 

In this paper, we present a new block cipher, referred as 

PUFFIN2, that is designed to be used with applications 

requiring very low circuit area. PUFFIN2 is designed to be 

implemented exclusively with CMOS technologies and in a 

serialized architecture, so that the maximum reuse of 

hardware components is achieved resulting in a very 

compact implementation. PUFFIN2 has a block size of 64 

bits and a key size of 80 bits. Compared with a serialized 

implementation of cipher PRESENT, which has the same 

block size and key size and is claimed as the smallest 

practical block cipher implementation to date, our cipher has 

16% fewer gates using the same CMOS technology. Further, 

PUFFIN2 inherently supports both encryption and 

decryption while the serialized PRESENT is an encryption-

only implementation.  

 

Index Terms— cryptography, block cipher, ASIC, 

hardware implementation 

 

1. INTRODUCTION 

 

Lightweight block cipher design is one of the recent trends 

in symmetric key cryptography. This trend is motivated by 

the wide variety of applications of compact embedded 

devices (e.g. smart cards, RFID tags) and the huge market 

demand for them at low price and low power consumption. 

To cater to this trend, there has been quite a few proposals 

dedicated to lightweight block cipher design and 

implementation in recent years, and some of the 

representative examples are PRESENT [1][2], HIGHT [3], 

SEA [4], and PUFFIN [5]. Among the ASIC 

implementations of these lightweight block ciphers, 

PRESENT is the most compact encryption-only cipher and 

PUFFIN is the smallest one capable of both encryption and 

decryption operations.  

It is well known that an efficient method to minimize 

hardware area is to reuse the single piece of a hardware 

component for multiple times instead of replicating identical 

pieces for simultaneous operation. This hardware reduction 

method, also known as a serialized architecture, is well 

suited to block ciphers which usually involve cryptographic 

components consisting of identical function blocks, e.g. non-

linear substitution layers generally consist of identical S-

boxes. Although this reduction of hardware area comes at 

the penalty of increased execution time, the compromised 

timing performance is still acceptable for many applications 

at which lightweight block ciphers are targeted. The 

serialized architecture is firstly exploited and applied to 

PRESENT in [2] and this is the smallest known 

implementation of a practical block cipher. In the reminder 

of the paper, this implementation is called serialized 

PRESENT. 

PUFFIN2 is a block cipher named after its predecessor 

PUFFIN and designed to be implemented exclusively with a 

serialized architecture, and it is expected that PUFFIN2 is 

more efficient than PRESENT for hardware implementation 

with serialized architecture. The capability of both 

encryption and decryption is another design goal of 

PUFFIN2, and in the following it will be shown that the 

datapath of PUFFIN2 is exactly same for encryption and 

decryption, so there is no hardware overhead to 

accommodate the difference between encryption and 

decryption operations. PUFFIN2 has the same block size 

and key size as PRESENT, 64-bit and 80-bit respectively. 

Compared with the widely adopted 128-bit key size and 

128-bit block size of AES [6], an 80-bit key size with a 64-

bit block size can result in a compact implementation and 

still provide sufficient security for typical low cost smart 

devices. Based on our ASIC implementation experiments, 

PUFFIN2 is realized with 1083 gates which is 16% less than 

the serialized PRESENT with 1296 gates. 

 

2. CIPHER SPECIFICATION 

 

The proposed block cipher PUFFIN2 adopts a simple 

involutional  substitution-permutation network (SPN) with a 

data block size of 64 bits and key size of 80 bits and consists 

of 34 rounds. The key schedule of the cipher generates 64-

bit round-keys for each round on-the-fly (that is, in parallel 

to the processing of the cipher data). Encryption and 



Table 1. S-box Mapping (in Hexadecimal) [5] 

X 0 1 2 3 4 5 6 7 

S(X) D 7 3 2 9 A C 1 

X 8 9 A B C D E F 

S(X) F 4 5 E 6 0 B 8 

 

Table 2. 64-bit Permutation [5] 

(input = row × 8 + column + 1) 
 0 1 2 3 4 5 6 7 

0 13 2 60 50 51 27 10 36 

1 25 7 32 61 1 49 47 19 

2 34 53 16 22 57 20 48 41 

3 9 52 6 31 62 30 28 11 

4 37 17 58 8 33 44 46 59 

5 24 55 63 38 56 39 15 23 

6 14 4 5 26 18 54 42 45 

7 21 35 40 3 12 29 43 64 

  

decryption processes are identical so the same datapath can  

be used for both processes. 

                                                                                                                                                                                                                               

2.1. Basic components 

 

Each round function of PUFFIN2 consists of 3 layers, a 

nonlinear substitution layer S, a key addition layer A and a 

permutation layer P. The nonlinear substitution layer S is 

composed of 16 identical 4x4 S-boxes, which are the same 

as the S-boxes used in PUFFIN and the S-box mapping is 

shown in Table 1. 4x4 S-boxes (which are small compared 

to the 8x8 S-boxes of AES) are often found in lightweight 

block ciphers because their implementations are compact 

and their comparative weakness in security strength can be 

compensated by an increased number of rounds. The key 

addition layer A performs a bitwise XOR with the 64-bit 

data block and the 64-bit round-key provided by the key 

schedule. The permutation layer P is a bit transposition of 

the 64-bit data block. The permutation scheme of PUFFIN2 

is borrowed from the 64-bit data block permutation of 

PUFFIN which fulfills the criterion that no two outputs of a 

4×4 S-box are connected to the same S-box in the next 

round. The permutation scheme is listed in Table 2. As can 

be seen from the tables, an important property that both the 

S-box mapping and the permutation possess is that they are 

involutions. A block cipher based on involutional function 

components can hold identical encryption and decryption 

processes, which is one of the design goals of PUFFIN2. 

 

2.2. Encryption and decryption process 

 

The encryption and decryption processes are shown in 

Figure 1, where Kr denotes the r-th round-key and 

K’r=P(Kr). The whole process consists of 34 rounds plus an 

           
Figure 1. Block diagram of the encryption (top) and                  

decryption (bottom) processes 

 

extra substitution layer. The explanation of selecting 34 as 

the number of rounds is given in the next sub-section. The 

extra substitution layer is required to form identical 

encryption and decryption processes. For each round of the 

encryption/decryption process, the 64-bit input data goes 

through the substitution layer S, the permutation layer P and 

then adds with the round key to generate the input of the 

next round. 

According to Figure 1, the encryption process of 

PUFFIN2 can be represented as follows: 

[ ] ( )34

34 1 2 34 1
, ,...,

r Kr
K K K O S P A Sα

=
= � � � . 

In the above expressions, the notation, “ � ”, means the 

concatenation of the basic operation in one stage such as 

substitution S and Permutation P. The notation “O” is used 

to represent the concatenation of 34 rounds of operation of 

( )S P A� � . Decryption should be as follows: 

[ ] ( )1 1

34 1 2 34 34
, ,...,

r Kr
K K K S O A P Sα −

=
= � � �  

                          ( )1

34r Kr
O S A P S

=
= � � � . 

Because the substitution layer S and the permutation layer P 

are involutional, we can have the following relationship: 

( )Kr P KrA P P A≡� � , 

and therefore, we can obtain the following: 

[ ] ( )1 1

34 1 2 34 34 ( ), ,..., r P KrK K K O S P A Sα −

== � � � . 

The above expression is consistent with the decryption 

process shown in Figure 1, which means the decryption 

process is similar in form to the encryption process. In the 

decryption process, the round-keys used in encryption are 

permuted with P and applied in the reverse order. 

 

2.3. Key schedule  

 

The key schedule of PUFFIN2 operates on an 80-bit key and 

generates a 64-bit key for each round on-the-fly. The 

components used by the key schedule are listed in Table 3 

and the key schedule is demonstrated in Figure 2. The key 

schedule consists of 34 round functions plus an extra 

substitution layer at the beginning. Each of the round 

function is comprised of a permutation layer PL64 or PR64 



Table 3. Description of the components of the key schedule 

Component Function 

S80 Substitution of the 80 bits 

PL64 Permutation of the left 64 bits 

PR64 Permutation of the right 64 bits 

L64 Selection of the left 64 bits 

R64 Selection of the right 64 bits 

 

Table 4. Round distribution of PL64, PR64, L64 and R64 

Round # Permutation Selection 

1, 2,33,34r =  PL64 L64 

3, 4,31,32r =  PR64 R64 

5 4 ,0 6r n n= + ≤ ≤  PR64 R64 

6 4 ,0 6r n n= + ≤ ≤  PR64 R64 

7 4 ,0 5r n n= + ≤ ≤  PL64 L64 

8 4 ,0 5r n n= + ≤ ≤  PL64 L64 

 

and a substitution layer S80. PL64 or PR64 permutes the left 

or right 64 bits of the 80-bit round input and then S80 

performs the substitution on the 80 bits of key data. 

Depending on the selection component L64 or R64, each 64-

bit round key is generated by taking the left or right 64 bits 

of the 80-bit intermediate value that feeds to the 

corresponding round function. The detailed distribution of 

PL64 and PR64 along with L64 and R64 is shown in Table 4. 

The irregular distribution of PL64 and PR64 for each round 

is intended to prevent related-key attacks, and will be 

discussed in Section 3.  

In order to maximize hardware resource reuse to 

achieve a compact implementation, the substitution 

component S80 is designed to consist of 4x4 S-boxes that 

are same as the S-box used in the encryption and decryption 

processes, and the 64-bit permutation mapping in PL64 and 

PR64 is also the same mapping as in the permutation layer in 

the encryption and decryption process.  

The key schedule of PUFFIN2 is designed to be 

involutional to fulfill the design goal of a full involutional 

block cipher. The involutional property is achieved through 

the following measures. In the first place, all basic 

components in the key schedule are involutional. Secondly, 

the distribution of PL64 PR64 along with L64 and P64 is 

symmetric, and in order to achieve this, the round number of 

the key schedule has to be a number that is double of an odd 

number and consequently 34 is selected as the round number 

of the key schedule as well as the encryption and decryption 

processes. As will be noted in Section 3, 34 rounds are also 

adequate to achieve an appropriate level of security. Thirdly, 

there is an extra substitution layer S80 at the beginning of 

the key schedule which makes the forward path of round key 

generation identical to its backward path. The PL64 and S80 

in the last round (round 34) of the key schedule are only 

useful to compute the decryption key corresponding to an 

encryption key. By applying a decryption key to the key 

schedule, the round keys would be generated in the reverse 

order of that made by the encryption key. It is also necessary 
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Figure 2. Block diagram of the key schedule 

 

to note that the round keys generated for decryption are 

permuted version of the round keys used in encryption, and 

this feature is required to provide the correct decryption 

round keys for the decryption process mentioned in the last 

sub-section. 

 

3. SECURITY ANALYSIS 

 

In this section, we analyze the security strength of PUFFIN2 

under differential and linear cryptanalysis and two major key 

schedule attacks. 

 

3.1. Differential and linear cryptanalysis 

 

Our proposed block cipher PUFFIN2 shares the same S-box 

and permutation mapping in encryption and decryption 

process as PUFFIN, so the differential and linear 

cryptanalysis results of PUFFIN2 can be easily derived from 

that of PUFFIN in [5]. 

For differential cryptanalysis [7], the maximum 

differential characteristic probability of the S-box is           , 

and based on the 4x4 S-boxes and the involutional 

permutation each round has at least one active S-box to form 

the path for a differential characteristic. Hence, the upper 

bound of the differential probability over 32 rounds is given 

by: 
32 642p pδ

−

Ω
≤ = . 

1 / 4pδ =



The differential probability  indicates that about 642  

plaintexts would be required to mount a successful attack, 

the complexity of which is close to a brute force attack on a 

64-bit cipher. Therefore, it is reasonable to consider 

PUFFIN2 to be enough resistant to differential cryptanalysis. 

For linear cryptanalysis [8], the maximum linear 

approximation probability bias of the S-box is           . 

Similar to the case in differential cryptanalysis, there is at 

least one active S-box involved in each round to form a 

linear approximation. Hence, the upper bound of the linear 

approximation bias   of 32 rounds is calculated with the 

piling-up lemma [8] as follows: 
3231 332 2

L S
ε ε −≤ = . 

According to [8], the number of the known plaintexts 

required to perform linear cryptanalysis is proportional to 

, which means an effective attack on PUFFIN2 with 

linear cryptanalysis requires about    known plaintexts and 

therefore is considered to be an impractical attack.  

 

3.2. Related-key attacks 

 

The related-key attack was proposed in [9]. It exploits the 

regularity of the relationships between key schedule rounds 

and uses the chosen key relations to retrieve the secret key 

information. The related-key attack generally finds its 

application on those block ciphers that use the same 

algorithm to generate round keys for all the rounds. It is easy 

to see that our block cipher does not have this regularity 

property in the key schedule because the permutation layers 

PL64 and PR64 are not regularly distributed among rounds, 

and hence it is resistant to the related-key attack.  

 

3.3. Weak keys 

 

Weak keys [10] are keys that make the key schedule produce 

identical round keys for all or some of the rounds. For the 

key schedule of PUFFIN2, due to the existence of non-linear 

substitution layers, we do not find any weak key in the key 

space. 

 

4. SERIALIZED ARCHITECTURE FOR HARDWARE 

IMPLEMENTATION 

 

The proposed block cipher PUFFIN2 is designed to be 

efficiently implemented with a serialized hardware 

architecture. A serialized architecture is the architecture 

where multiple identical hardware components that work for 

multiple tasks simultaneously are mapped to one piece of the 

hardware component that works for the multiple tasks in 

series. Generally, a serialized architecture can lead to the 

minimal hardware implementation among a variety of 

implementation architectures. In this section, we introduce a 

serialized architecture for which the proposed block cipher 

PUFFIN2 is well suited in and that results in an ultra 

.
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Figure 3. Serialized architecture of PUFFIN2 

 

compact implementation.  

The serialized architecture for PUFFIN2 is shown in 

Figure 3.  This architecture is constructed with two 4-bit 2-

to-1 multiplexers, a 64-bit 2-to-1 multiplexer, a 4-bit XOR 

adder “A”, a 4x4 S-box “S”, a 64-bit permutation “P”, and a 

144-bit register. The architecture conceives a 144-bit wide 

datapath and the hardware components operate on the 

datapath.  

It is also worthy to mention that there is a 4-bit rotation 

structure on the datapath, which is crucial to ensure the 

hardware resources are shared properly in series and the 

block cipher algorithm is running correctly in the 

architecture. The 4-bit rotation structure is realized by 

crossover wiring that maps bits 1 to 140 to bits 5 to 144 and 

bits 141 to 144 to bits 1 to 4 (through the adder “A” and the 

S-box “S”).  

The 4-bit 2-to-1 multiplexer with a dashed 4-bit zero 

input in Figure 3 is called the first 4-bit multiplexer and the 

other one is called the second 4-bit multiplexer. The first 4-

bit multiplexer is capable to output a zero vector 

independent of its two inputs, and this is achieved by 

ANDing the 4-bit output of the multiplexer with a signal bit 

from the controller. 

In the following, we describe the work flow of the 

serialized architecture with the example of plaintext and key 

loading procedure and the first round of the encryption 

process. We call the bits that carry plaintext information and 

key information during the encryption process as internal 

plaintext bits and internal key bits, respectively. A 64-bit 

plaintext plus an 80-bit encryption key is loaded in units of 4 

bits through the first 4-bit multiplexer to the datapath. The 

first 4-bit unit is presented to the input of the 144-bit register 

in the 1
st
 clock cycle and becomes available at the output of 

pΩ

1 / 4Sε =

21 /
L

ε

662

Lε



 
Figure 4. Contents of the 144-bit register at clock cycles 6, 

37, 45, 53 and 57 

 

the register in the 2
nd

 clock cycle. Each subsequent 4-bit unit 

is added with a 4-bit zero vector and then fed through the S-

box before being stored in the 144-bit register. The 4-bit 

zero vector is generated by the initial output of the 144-bit 

register. The 4-bit rotation structure makes sure each 4-bit 

unit is added with a 4-bit zero vector and stored in the 

register bits next to the last 4-bit unit. The loading procedure 

of the plaintext plus the key takes 36 clock cycles and during 

this period the first substitution layers in the encryption 

process and key schedule are also performed. In the 37
th

 

clock cycle, the 64-bit internal plaintext bits are permuted 

with the 64-bit permutation by selecting position 1 of the 64-

bit 2-to-1 multiplexer, and then the right most 4 bits of the 

updated internal plaintext bits are added with the right most 

4 bits of the left 64 bits of the internal key bits by selecting 

position 0 of the second 4-bit multiplexer. It takes 16 clock 

cycles to complete the key addition of 64 bits and ends at the 

52
nd

 clock cycle. In the 53
rd

 cycle, the right-most 4 bits of 

the 80-bit internal key bits are added with a 4-bit zero vector 

in A and then substituted by the S-box. In the 57
th

 cycle, the 

left 64 bits of the 80-bit internal key bits are permuted with 

the 64-bit permutation. In order to better demonstrate the 

work of the architecture, the contents of the 144-bit register 

at clock cycles 6, 37, 45, 53 and 57 are shown in Figure 4 

(a), (b), (c), (d) and (e), respectively. The dotted 4-bit block 

in Figure 4 (b) is the 4 bits used to be added with the right 

most 4 bits of the internal plaintext (after the permutation) in 

the 37
th

 cycle. 

The 64-bit internal plaintext bits and the 80-bit internal 

key bits are rotated within the 144-bit register and it takes 36 

cycles to complete a full rotation. The period of 36 cycles is 

also the time to complete a round of the 

encryption/decryption process. Hence, the total time to 

complete the entire encryption/decryption including the 16 

cycles for the initial loading of the plaintext is given by: 

Table 5. Implementation results of PUFFIN2 and serialized 

PRESENT 

 
Area 

(GEs) 

Maximum 

Frequency 
Cycles 

Throughput

@100KHz 

PUFFIN2 1083 326.8MHz 1240 5.2Kbps 

Serialized 

PRESENT 
1296 346.0MHz 563 11.4Kbps 

 

(16 36 34) 1240cc cc+ × = , 

where cc represents one clock cycle. 

 

5. HARDWARE IMPLEMENTATION RESULTS 

 

The block cipher PUFFIN2 with the serialized architecture 

has been implemented and synthesized with the 0.18-µm 

CMOS standard cell library from TSMC available through 

CMC Microsystems [11]. Synopsys Design Compiler 

version X-2005.09 has been used as our synthesis tool. We 

also implemented the serialized PRESENT from [2] which is 

claimed as the smallest implementation of a block cipher 

with 64-bit block size. Both of the implementations are 

datapath-only implementations, which means their 

controllers are not included in the implementations, and in 

both cases the controllers are negligible because they can be 

realized with a small counter and a small amount of 

combinational logic. Our implementation results of 

PUFFIN2 and the serialized PRESENT are shown in Table 

5. In the table, the metric of gate equivalents (GEs) is used, 

where a unit of 1 GE represents an area equivalent to a 2-

input NAND gate. 

According to Table 5, the implementation of PUFFIN2 

is 16% smaller than the serialized PRESENT 

implementation. As a trade-off PUFFIN2 takes almost 

double the time of the serialized PRESENT to process the 

same amount of data. In most lightweight applications, a 

large running time is not a serious issue. 

It is necessary to point out that the gate count of the 

serialized PRESENT implementation claimed in [2] is 1075 

GE. The 221 GE overhead of our implementation of the 

serialized PRESENT could be caused by the different 

synthesis library and the use of scan flip flops with 

integrated multiplexers in [2] instead of the normal flip flops 

and separated multiplexers found in our implementation. 

The same area reduction effect can be achieved in our 

implementation of PUFFIN2 with scan flip flops as long as 

the 144-bit register is moved to the output of the 64-bit 2-to-

1 multiplexer to form the integrated flip flops and 

multiplexers. The position of the 144-bit register is flexible 

in the serialized architecture, so this change would not have 

any influence on the functionality. 

In order to have a clear comparison between the 

hardware complexity of PUFFIN2 and the serialized 

PRESENT, we list the count of the hardware components 

required for both implementations in Table 6. The 144-bit 

register in PUFFIN2 is divided into a 64-bit register and 



Table 6. Count of hardware components  of PUFFIN2 and 

serialized PRESENT 

Components PUFFIN2 
Serialized 

PRESENT 

64-bit register  

(384 GE) 
1  (35.5%) 1  (29.6%) 

80-bit register  

(480 GE) 
1  (44.3%) 1  (37.0%) 

64-bit 2-to-1 multiplexer 

(153 GE) 
1  (14.1%) 1  (11.8%) 

80-bit 2-to-1 multiplexer 

(192 GE) 
0 1  (14.8%) 

4-bit 2-to-1 multiplexer 

(10 GE) 
2  (1.8%) 3  (2.3%) 

4x4 S-box* 

(30 GE / 32GE) 
1  (2.8%) 1  (2.5%) 

4-bit XOR adder 

(11 GE) 
1  (1.0%) 1  (0.9%) 

5-bit XOR adder 

(14 GE) 
0 1  (1.1%) 

4 2-input AND gates 

(5 GE) 
1  (0.5%) 0 

Total gate count 
1083 GE 

(100%) 

1296 GE 

(100%) 

* PUFFIN2 and the serialized PRESENT use different S-boxes 

with slightly different area. 

 

an 80-bit register in Table 6, and the 36 4-bit 2-to-1 

multiplexers in the two shift registers of the serialized 

PRESENT are merged and shown as a 64-bit 2-to-1 

multiplexer and an 80-bit 2-to-1 multiplexer in Table 6. 

From Table 6, we can see the major area difference 

between PUFFIN2 and the serialized PRESENT comes from 

the 80-bit 2-to-1 multiplexer, which accounts for 14.8% of 

the total area of the serialized PRESENT and does not exist 

in PUFFIN2. It is also noticeable in Table 6 that the 144-bit 

register takes 80% of the hardware resource of PUFFIN2, 

and this fact allows us to believe that the serialized 

implementation of PUFFIN2 has approached the area limit 

of the block ciphers that have similar block size and key size.  

 

6. CONCLUSION 

 

In this paper we have proposed a new block cipher 

PUFFIN2 based on an involutional SPN structure. The 

cipher with a 64-bit block size and an 80-bit key size can 

provide sufficient security for low cost embedded devices 

and support both encryption and decryption. We also 

introduced a serialized architecture based on which 

PUFFIN2 can be implemented with an ultra compact size. 

Compared with the serialized PRESENT implementation, 

the datapath of PUFFIN2 uses 16% fewer gates. In general, 

the PUFFIN2 block cipher is a secure, area-efficient 

structure in comparison to other proposed compact block 

ciphers. 
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