
A PIPELINED IMPLEMENTATION OF THE GRØSTL HASH ALGORITHM AND THE
ADVANCED ENCRYPTION STANDARD

Kai Guo and Howard M. Heys

Electrical and Computer Engineering
Faculty of Engineering and Applied Science

Memorial University of Newfoundland

ABSTRACT

Grøstl is a recently proposed cryptographic hash algorithm
that has common structure and features with the Advanced
Encryption Standard (AES). The objective of this paper is to
present the design of a high speed joint implementation of
Grøstl and AES with minimal resources using a pipelining
method. The advantage of this implementation is that it
efficiently provides both cryptographic hash function and
block cipher. The system is targeted to the Altera Cyclone
IV FPGA. The paper presents a complete description of the
design and implementation, as well as an analysis of the
resulting synthesis and comparison to other proposed
implementations of the Grøstl hash function.

Index Terms — cryptographic hash function, Grøstl,
Advanced Encryption Standard (AES), FPGA, SHA-3

1. INTRODUCTION

The objective of this work was the design a high speed joint
implementation of Grøstl [1] and AES [2] with minimal
resources using a pipelining method. The system is targeted
to the Altera Cyclone IV FPGA using the DE2-115
development board [3]. The motivation for the design is that
Grøstl is AES-inspired and has common structure with AES.
Hence, an implementation combining Grøstl and AES by
sharing logic elements will not significantly increase the
expense of area and delay. The efficiency of sharing
hardware resources determines the performance of such an
implementation and the analysis of the resulting system is
presented.

2. BACKGROUND

2.1. Cryptographic Hash Function

A cryptographic hash function is an algorithm that processes
an arbitrary block of message to a fixed–size hash code
without a key [4]. A hash function has three major
properties. First, it is hard to derive the message from a
given hash code. Second, any change in the data will change
the hash code. Third, it is hard to find two different
messages that produce the same hash code.

Cryptographic hash functions are widely used in a
variety of applications. For security applications, hash
functions are used for authentication processes, such as
digital signatures and message authentication codes
(MACs). Cryptographic hash functions can also be used as
ordinary hash functions to detect accidental data corruption
and duplicate data.

In 2007, the National Institute of Standards and
Technology (NIST) announced an open competition for a
new secure hash algorithm, SHA-3 [5], to replace the older
SHA-1 and SHA-2 standards after 2012, due to the
discovery of serious attacks, particularly against SHA-1.

2.2. Grøstl

Grøstl [1] was one of the five finalists of the SHA-3
competition. Grøstl consists of an iterated compression
function f and an output transformation Ω. They are shown
in Fig. 1.

In Fig. 1, the hash function, labeled H(m), produces an
n bit hash code based on IV, the initialization vector, and
m1, … , mt which are l-bit message blocks derived from
input message M such that l≥2n. In this paper, we
investigate a Grøstl-256 implementation for which l is 512
and n is 256.
The f function has two l-bit permutations called P and Q
with slight differences. It is defined as:
 f(h,m) = P(h⊕m)⊕Q(m)⊕h (1)
The construction of f function is illustrated in Fig. 2.

The output transformation Ω produces the output of the
hash function by truncating and only keeping the lowest n
bits of P(x)⊕x. Hence,
 Ω(x)=trunc(P(x)⊕x). (2)
The P and Q permutations are based on the four
transformations in AES with a few differences. For this
work, the state size is 512 bits, which is four times the size
of the AES block. The state may be viewed as an 8×8 array
of bytes. Each round of P and Q consists of four
transformations: AddConstant, SubBytes, ShiftRow, and
MixColumns. These operations are described as follows.

Figure 1. Overall Structure of Grøstl

Figure 2. f function

(1) AddConstant outputs the result of exclusive-or of the
input and a constant C[i], which is a constant word for
round i. The constants for P and Q are given in [1].

(2) SubBytes is identical to SubBytes of AES. The SubBytes
of AES will be described in the next section.

(3) ShiftRows is a cyclic shift operation applied to each row
by shifting a different number of bytes to the left. The
shift pattern is shown in Fig. 3.

(4) MixColumns is a matrix multiplication applied to each
column using arithmetic in GF(28). The matrix
multiplied to the columns is illustrated below:

2.3. Advanced Encryption Standard

The Rijndael cipher was named as AES in 2001 by NIST for
use by the U.S. government [2]. It has subsequently become
widespread in many application environments. AES is well
known as a secure block cipher based on the concepts of
diffusion and confusion presented by Shannon [6]. It has a
128 bit block size and operates on a state viewed as a 4×4
array of bytes. The AES process for a 128-bit key has 10 of
rounds iteration and each round has four transformations to
construct diffusion or confusion. They are AddRoundKey,
SubBytes, ShiftRows and MixColumns and are described as
follows:

 (1) AddRoundKey performs the exclusive-or operation on a

bit-by-bit basis between the round key and the 128-bit
cipher state.

(2) SubBytes is a nonlinear substitution using a look-up table
(S-Box) which is a mapping of one byte to one byte.
Let the input and output byte of S-Box function be a
and s, respectively. The mapping is defined by two
substeps:

 i. Inverse: c = a-1, the multiplicative inverse in GF(28)
(except when a = 0, c = 0).

 ii. Affine Transformation: The output byte is s = Ac⊕b
where A is a constant matrix and b is a constant byte
shown in (3) below.

!7
!6
!5
!4
!3
!2
!1
!0

=

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

!7
!6
!5
!4
!3
!2
!1
!0

⊕

0
1
1
0
0
0
1
0

 (3)

(3) ShiftRows is cyclic shift operation applied to each row

by shifting a different number of bytes to the left. To be
specific, shifts of 0, 1, 2 and 3 bytes to the left are
applied on rows 0, 1, 2 and 3, respectively.

(4) MixColumns is a linear transformation function applied
to each column, that can be viewed as a matrix
multiplication to each column. The operation for each
column [S0,i, S1,i, S2,i, S3,i] is

Figure 3. Shift Pattern for P (top) and Q (bottom)

S0,i
S1,i
S2,i
S3,i

!

"

#
#
#
#
#

$

%

&
&
&
&
&

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

!

"

#
#
#
#

$

%

&
&
&
&

=

'S0,i
'S1,i
'S2,i
'S3,i

!

"

#
#
#
#
#

$

%

&
&
&
&
&

 (4)

There are various implementation methods of the S-
Box. For this research, the composite field method [7] is
used to minimize hardware resources. Specifically, the
composite field implementation uses subfield arithmetic to
find the multiplicative inverse in GF(28). Because it is costly
in hardware to directly find the inverse in GF(28), taking this
approach the inverse can be reduced to finding the inverse in
GF(24) and several multiplications in GF(24). As well, with
this S-Box structure, it is possible to split the S-Box logic,
which will be discussed in the section on pipeline design.

3. DESIGN CONSIDERATIONS

The goal of the research is to design a high speed joint
implementation that can do both the Grøstl and AES
processes efficiently with minimal hardware resources. The
Grøstl P and Q transformations and AES encryption process
are denoted as P, Q and E for the following discussion.
There are two ways to achieve high speed: one is to process
P, Q and E in parallel and the other is to use a pipeline
structure to process P/Q/E simultaneously. These two
choices are shown in Fig. 4 and Fig. 5.

In Fig. 4, P, Q and E blocks are full round hardware. In
Fig. 5, the sub-round pipelining is applied instead of full-
round, which means a full round hardware is split into three
balanced pipeline stages. The reason to choose sub-round is
that P, Q and E are all independent and can simply be done
in parallel. Therefore, pipelining of multiple full-round
hardware is not helpful. The comparison is as follows:
1. Parallel implementation of P/Q/E needs three full rounds
of hardware and 10 clock cycles for 10 round process.
Hence, the total time is 10Tround, where Tround is the duration
of clock cycle required for 1 full round.
2. Sub-round pipelining requires about one full round of
hardware and 32 clock cycles to produce both the encrypted
and hashed result. With proper balanced pipeline stages, the
clock cycle can be around Tround/3. Hence, the total time is
close to 10Tround.

Figure 4. Parallel Implementation

Based on the above comparison, the pipelining structure is
selected for this project because it requires far fewer
resources than the parallel structure, but keeps almost the
same throughput.

4. STRUCTURE OF THE SYSTEM

4.1. Datapath and Control Unit

The combined datapath design is based on the concept
presented in [8]. Since Grøstl consists of four
transformations similar to AES, the system uses joint
components for each transformation that can process both
Grøstl and AES. AddConstant and AddRoundKey share
XOR gates. SubBytes is shared entirely since Grøstl uses the
identical S-Box to AES. The composite field S-Box
architecture is used to achieve minimal hardware resources.
ShiftRows is constructed by swapping bytes. MixColumns
shares the multipliers and XOR gates, but adds extra
multipliers (×4, ×5, ×7) for Grøstl. The control unit provides
proper control signals for each pipeline stage and
transformation components. The overall design is shown in
Fig. 6.

P Q E

Figure 5. Pipeline Implementation

Figure 6. Datapath and Control Unit

In the Fig. 6, gdata and edata are the 512-bit inputs for
Grøstl and AES, respectively. Components Gregister and
Eregister are 512-bit registers. When P, Q and E are serially
processed, Gregister will store the result of P and then
replace with the result of Q and Eregister will store the
result of E. Signals Reg_ctl and P/Q/E are control signals
provided by the control unit. IV is the initial vector of
Grøstl.

4.2. Pipeline Design

The pipeline structure as shown in Fig. 6 is achieved by
splitting a full round hardware into three sub-rounds and
adding pipeline registers between them. The pipelining
block will process P/Q/E serially, which needs 32 clock
cycles in total.

Under the consideration of distributing the pipeline
registers more evenly, an optimized pipeline is shown in
Fig. 7. Fig. 7 also shows the propagation delay of each
pipeline stage from the result of timing analysis tool,
TimeQuest from the Altera Quartus II development tools.

As shown in Fig. 7, the SubBytes transformation is split
into two parts (SubBytes1 and SubBytes2) in the optimized
version in order to balance the critical paths in the each
pipeline stage. The first part, SubBytes1, is moved into
StageA. This modification decreases the propagation delay
of StageB from 5.816 ns to 4.127 ns. Since the slowest stage
in the pipeline restricts the maximum frequency of the
system, the optimized version can theoretically work at the
frequency of 242 MHz. In comparison with 172 MHz of the
non-optimized version, the improvement is significant.

5. SYNTHESIS RESULTS AND PERFORMANCE

In Table 1, the synthesis results of the proposed
implementation and the results of others are presented for
comparison using similar Altera FPGA technologies. Note
that an extension of the design of [9] to include encryption
would require an estimated 25,000 logic elements in total.
In comparison to other systems, our implementation is
capable of efficiently both hashing and encrypting a 512-bit

block, using fewer logic elements than in [10], while
producing higher throughout.

Table 1. Comparison of synthesis result
(TP = Throughput, #LE = number of logic elements, H+E = hash and

encryption for each 512-bit block, H = hash only)

6. CONCLUSION

The joint FPGA implementation of Grøstl and AES has
enabled us to design an efficient high-speed system capable
of simultaneously acting as a cryptographic hash function
and block cipher. It can process one block of Grøstl and four
parallel blocks of AES simultaneously in 32 clock cycles
and is more efficient than other implementations in similar
Altera FPGA technology.

11. REFERENCES

[1] P. Gauravaram, L.R. Knudsen, K. Matusievicz, F. Mendel, C.
Rechberger, M. Schläffer, and S.S. Thomsen, "Grostl - A SHA-3
Candidate", submission to the NIST SHA-3 Competition, available
at http://www.groestl.info/, 2011.
[2] NIST, FIPS197, “Advanced encryption standard,” available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 2001.
[3] Altera DE2-115 FPGA board user manual, available at
www.terasic.com.
[4] National Institute of Standards and Technology, Cryptographic
Hash Project, csrc.nist.gov/groups/ST/hash/index.html.
[5] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone,
Handbook of Applied Cryptography, CRC Press, 1996.
[6] C. E. Shannon, "Communication Theory of Secrecy Systems",
Bell System Technical Journal, vol.28-4, pp. 656-715, 1949.
[7] M.M. Wong, M.L.D., Wong, A.K. Nandi, and I. Hijazin,
“Composite field GF(((22)2)2) AES S-box with algebraic normal
form representation in the subfield inversion”, IET Circuits,
Devices & Systems, vol. 5, no. 6, pp. 471-476, 2011.
[8] K. Järvinen, "Sharing Resources Between AES and the SHA-3
Second Round Candidates Fugue and Grøstl", presented at the
Second SHA-3 Candidate Conference, 2010.
[9] E. Homsirikamol, M. Rogawski, and K. Gaj. "Comparing
Hardware Performance of Fourteen Round Two SHA-3 Candidates
Using FPGAs", IACR Eprint report 2010/445, available at
eprint.iacr.org/2010/445.pdf, 2010.
[10] M. Rogawski and K. Gaj, “A High-Speed Unified Hardware
Architecture for AES and the SHA-3 Candidate Grøstl”, presented
at Euromicro Conference on Digital System Design (DSD 2012),
Izmir, Turkey, 2012.

System #LE Max.
Freq

(MHz)

Clocks
per

block

TP
(Mbps)

This work (Cyclone IV) 15,135 242.3 32 3877 (H+E)

[8] (Cyclone III) 13,723 56.0 30 956 (H)

[9] (Cyclone IV) 6209 149.6 21 3647 (H)

[10] (Cyclone III) 23,039 159.9 31 2640 (H+E)

Figure 7. Pipeline optimization

