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ABSTRACT 
 
Grøstl is a recently proposed cryptographic hash algorithm 
that has common structure and features with the Advanced 
Encryption Standard (AES). The objective of this paper is to 
present the design of a high speed joint implementation of 
Grøstl and AES with minimal resources using a pipelining 
method. The advantage of this implementation is that it 
efficiently provides both cryptographic hash function and 
block cipher. The system is targeted to the Altera Cyclone 
IV FPGA. The paper presents a complete description of the 
design and implementation, as well as an analysis of the 
resulting synthesis and comparison to other proposed 
implementations of the Grøstl hash function. 
 
Index Terms — cryptographic hash function, Grøstl, 
Advanced Encryption Standard (AES), FPGA, SHA-3 
 

1. INTRODUCTION 
 
The objective of this work was the design a high speed joint 
implementation of Grøstl [1] and AES [2] with minimal 
resources using a pipelining method. The system is targeted 
to the Altera Cyclone IV FPGA using the DE2-115 
development board [3]. The motivation for the design is that 
Grøstl is AES-inspired and has common structure with AES. 
Hence, an implementation combining Grøstl and AES by 
sharing logic elements will not significantly increase the 
expense of area and delay. The efficiency of sharing 
hardware resources determines the performance of such an 
implementation and the analysis of the resulting system is 
presented. 
 

2. BACKGROUND 
 
2.1. Cryptographic Hash Function 
 
A cryptographic hash function is an algorithm that processes 
an arbitrary block of message to a fixed–size hash code 
without a key [4]. A hash function has three major 
properties. First, it is hard to derive the message from a 
given hash code. Second, any change in the data will change 
the hash code. Third, it is hard to find two different 
messages that produce the same hash code.  

Cryptographic hash functions are widely used in a 
variety of applications. For security applications, hash 
functions are used for authentication processes, such as 
digital signatures and message authentication codes 
(MACs). Cryptographic hash functions can also be used as 
ordinary hash functions to detect accidental data corruption 
and duplicate data. 

In 2007, the National Institute of Standards and 
Technology (NIST) announced an open competition for a 
new secure hash algorithm, SHA-3 [5], to replace the older 
SHA-1 and SHA-2 standards after 2012, due to the 
discovery of serious attacks, particularly against SHA-1. 
 
2.2. Grøstl 
 
Grøstl [1] was one of the five finalists of the SHA-3 
competition. Grøstl consists of an iterated compression 
function f and an output transformation Ω. They are shown 
in Fig. 1. 

In Fig. 1, the hash function, labeled H(m), produces an 
n bit hash code based on IV, the initialization vector, and 
m1, … , mt which are l-bit message blocks derived from 
input message M such that l≥2n. In this paper, we 
investigate a Grøstl-256 implementation for which l is 512 
and n is 256. 
The f function has two l-bit permutations called P and Q 
with slight differences. It is defined as: 
  f(h,m) = P(h⊕m)⊕Q(m)⊕h (1) 
The construction of f function is illustrated in Fig. 2.  

The output transformation Ω produces the output of the 
hash function by truncating and only keeping the lowest n 
bits of P(x)⊕x. Hence, 
  Ω(x)=trunc(P(x)⊕x).  (2) 
The P and Q permutations are based on the four 
transformations in AES with a few differences. For this 
work, the state size is 512 bits, which is four times the size 
of the AES block. The state may be viewed as an 8×8 array 
of bytes. Each round of P and Q consists of four 
transformations: AddConstant, SubBytes, ShiftRow, and 
MixColumns. These operations are described as follows. 
 



 
Figure 1.  Overall Structure of Grøstl 

   
Figure 2. f function 

(1) AddConstant outputs the result of exclusive-or of the 
input and a constant C[i], which is a constant word for 
round i. The constants for P and Q are given in [1].  

(2) SubBytes is identical to SubBytes of AES. The SubBytes 
of AES will be described in the next section. 

(3) ShiftRows is a cyclic shift operation applied to each row 
by shifting a different number of bytes to the left. The 
shift pattern is shown in Fig. 3. 

(4) MixColumns is a matrix multiplication applied to each 
column using arithmetic in GF(28). The matrix 
multiplied to the columns is illustrated below: 

 
 
 
 
   
 
 
 
  
 

 
2.3. Advanced Encryption Standard 
 
The Rijndael cipher was named as AES in 2001 by NIST for 
use by the U.S. government [2]. It has subsequently become 
widespread in many application environments. AES is well 
known as a secure block cipher based on the concepts of 
diffusion and confusion presented by Shannon [6]. It has a 
128 bit block size and operates on a state viewed as a 4×4 
array of bytes. The AES process for a 128-bit key has 10 of 
rounds iteration and each round has four transformations to 
construct diffusion or confusion. They are AddRoundKey, 
SubBytes, ShiftRows and MixColumns and are described as 
follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 (1) AddRoundKey performs the exclusive-or operation on a 

bit-by-bit basis between the round key and the 128-bit 
cipher state. 

(2) SubBytes is a nonlinear substitution using a look-up table 
(S-Box) which is a mapping of one byte to one byte. 
Let the input and output byte of S-Box function be a 
and s, respectively. The mapping is defined by two 
substeps: 

 i. Inverse: c = a-1, the multiplicative inverse in GF(28) 
(except when a = 0, c = 0). 

 ii. Affine Transformation: The output byte is s = Ac⊕b 
where A is a constant matrix and b is a constant byte 
shown in (3) below.  
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(3) ShiftRows is cyclic shift operation applied to each row 

by shifting a different number of bytes to the left. To be 
specific, shifts of 0, 1, 2 and 3 bytes to the left are 
applied on rows 0, 1, 2 and 3, respectively. 

(4) MixColumns is a linear transformation function applied 
to each column, that can be viewed as a matrix 
multiplication to each column. The operation for each 
column [S0,i, S1,i, S2,i, S3,i] is 

 

 

Figure 3. Shift Pattern for P (top) and Q (bottom) 
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There are various implementation methods of the S-
Box. For this research, the composite field method [7] is 
used to minimize hardware resources. Specifically, the 
composite field implementation uses subfield arithmetic to 
find the multiplicative inverse in GF(28). Because it is costly 
in hardware to directly find the inverse in GF(28), taking this 
approach the inverse can be reduced to finding the inverse in 
GF(24) and several multiplications in GF(24). As well, with 
this S-Box structure, it is possible to split the S-Box logic, 
which will be discussed in the section on pipeline design. 

 
3. DESIGN CONSIDERATIONS 

 
The goal of the research is to design a high speed joint 
implementation that can do both the Grøstl and AES 
processes efficiently with minimal hardware resources. The 
Grøstl P and Q transformations and AES encryption process 
are denoted as P, Q and E for the following discussion. 
There are two ways to achieve high speed: one is to process 
P, Q and E in parallel and the other is to use a pipeline 
structure to process P/Q/E simultaneously.  These two 
choices are shown in Fig. 4 and Fig. 5. 

In Fig. 4, P, Q and E blocks are full round hardware. In 
Fig. 5, the sub-round pipelining is applied instead of full-
round, which means a full round hardware is split into three 
balanced pipeline stages. The reason to choose sub-round is 
that P, Q and E are all independent and can simply be done 
in parallel. Therefore, pipelining of multiple full-round 
hardware is not helpful. The comparison is as follows:  
1. Parallel implementation of P/Q/E needs three full rounds 
of hardware and 10 clock cycles for 10 round process. 
Hence, the total time is 10Tround, where Tround is the duration 
of clock cycle required for 1 full round.   
2. Sub-round pipelining requires about one full round of 
hardware and 32 clock cycles to produce both the encrypted 
and hashed result. With proper balanced pipeline stages, the 
clock cycle can be around Tround/3. Hence, the total time is 
close to 10Tround. 
 

 
 
 
 
 
 
 

Figure 4. Parallel Implementation 
 

Based on the above comparison, the pipelining structure is 
selected for this project because it requires far fewer 
resources than the parallel structure, but keeps almost the 
same throughput. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

4. STRUCTURE OF THE SYSTEM 
 

4.1. Datapath and Control Unit 
 
The combined datapath design is based on the concept 
presented in [8]. Since Grøstl consists of four 
transformations similar to AES, the system uses joint 
components for each transformation that can process both 
Grøstl and AES. AddConstant and AddRoundKey share 
XOR gates. SubBytes is shared entirely since Grøstl uses the 
identical S-Box to AES. The composite field S-Box 
architecture is used to achieve minimal hardware resources. 
ShiftRows is constructed by swapping bytes. MixColumns 
shares the multipliers and XOR gates, but adds extra 
multipliers (×4, ×5, ×7) for Grøstl. The control unit provides 
proper control signals for each pipeline stage and 
transformation components. The overall design is shown in 
Fig. 6. 
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Figure 5. Pipeline Implementation 

Figure 6. Datapath and Control Unit 



In the Fig. 6, gdata and edata are the 512-bit inputs for 
Grøstl and AES, respectively. Components Gregister and 
Eregister are 512-bit registers. When P, Q and E are serially 
processed, Gregister will store the result of P and then 
replace with the result of Q and Eregister will store the 
result of E. Signals Reg_ctl and P/Q/E are control signals 
provided by the control unit. IV is the initial vector of 
Grøstl. 
 
4.2. Pipeline Design 

 
The pipeline structure as shown in Fig. 6 is achieved by 
splitting a full round hardware into three sub-rounds and 
adding pipeline registers between them. The pipelining 
block will process P/Q/E serially, which needs 32 clock 
cycles in total.  

Under the consideration of distributing the pipeline 
registers more evenly, an optimized pipeline is shown in 
Fig. 7. Fig. 7 also shows the propagation delay of each 
pipeline stage from the result of timing analysis tool, 
TimeQuest from the Altera Quartus II development tools. 

As shown in Fig. 7, the SubBytes transformation is split 
into two parts (SubBytes1 and SubBytes2) in the optimized 
version in order to balance the critical paths in the each 
pipeline stage. The first part, SubBytes1, is moved into 
StageA. This modification decreases the propagation delay 
of StageB from 5.816 ns to 4.127 ns. Since the slowest stage 
in the pipeline restricts the maximum frequency of the 
system, the optimized version can theoretically work at the 
frequency of 242 MHz. In comparison with 172 MHz of the 
non-optimized version, the improvement is significant. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
5. SYNTHESIS RESULTS AND PERFORMANCE 

 
In Table 1, the synthesis results of the proposed 
implementation and the results of others are presented for 
comparison using similar Altera FPGA technologies. Note 
that an extension of the design of [9] to include encryption 
would require an estimated  25,000 logic elements in total. 
In comparison to other systems, our implementation is 
capable of efficiently both hashing and encrypting a 512-bit 

block, using fewer logic elements than in [10], while 
producing higher throughout.  
 

Table 1. Comparison of synthesis result 
(TP = Throughput, #LE = number of logic elements, H+E = hash and 

encryption for each 512-bit block, H = hash only) 

 
6. CONCLUSION 

 
The joint FPGA implementation of Grøstl and AES has 
enabled us to design an efficient high-speed system capable 
of simultaneously acting as a cryptographic hash function 
and block cipher. It can process one block of Grøstl and four 
parallel blocks of AES simultaneously in 32 clock cycles 
and is more efficient than other implementations in similar 
Altera FPGA technology. 
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System #LE Max.  
Freq 

(MHz) 

Clocks 
per 

block 

TP 
(Mbps) 

This work (Cyclone IV) 15,135 242.3 32 3877 (H+E) 

[8] (Cyclone III) 13,723 56.0 30 956 (H) 

[9] (Cyclone IV) 6209 149.6 21 3647 (H) 

[10] (Cyclone III) 23,039 159.9 31 2640 (H+E) 

Figure 7. Pipeline optimization 


