
An Integrated Hardware Platform for
Four Different Lightweight Block Ciphers

Haohao Liao and Howard M. Heys
Department of Electrical and Computer Engineering

Memorial University of Newfoundland

Abstract— In this paper, we investigate the hardware imple-
mentation of four different, but similar, lightweight block cipher-
s: PRESENT, Piccolo, PRINTcipher and LED. The purpose of
this paper is to present a common platform which integrates
these four ciphers into one system using a shared datapath,
with the objective of reducing the area below the total sum
of area consumed by the individual ciphers. The structure and
implementation of the platform is clearly stated in the paper
with the target technology being the Altera Cyclone IV FPGA.

I. INTRODUCTION

In recent years, with the development of new technologies,
such as the RFID tags, more and more resource-constrained
environments have security requirements. Under this circum-
stance, researchers have developed several lightweight block
ciphers to meet the strict resource requirements such as
PRESENT [1], Piccolo [2], PRINTcipher [3], and LED [4].
These ciphers share a similar structure referred to as a Substi-
tution Permutation Network (SPN) [5]. In some applications,
such as RFID tags and other embedded systems, there is a
need to integrate several different lightweight block ciphers
into a single device to supply higher flexibility for multiple
application environment. However, there is always a trade-
off between flexibility and hardware resource consumption.
Under this situation, we develop a digital hardware platform
which integrates PRESENT, Piccolo, PRINTcipher, and LED
without a large increase in hardware resource consumption.
The platform is targeted to the Altera Cyclone IV FPGA
technology [6]. The resources consumed by the platform are
significantly fewer than the total sum of the four ciphers. The
resulting resource usage and performance in terms of through-
put are presented in this paper. Since in many applications,
only the forward or encryption process of the block cipher
is required (eg. counter mode), this paper does not discuss
the decryption process, although due to the similar structure
of encryption and decryption processes, similar results are
expected.

II. BACKGROUND

In this section, we present the necessary background for
the work in this paper.

.

.

.

Add_Roundkey

Sbox Layer

Permutaton Layer

Add_Roundkey

Sbox Layer

Permutaton Layer

Plaintext

Sbox Layer

Add_Roundkey

Ciphertext

Round

Fig. 1. A typical structure of SPN.

A. Substitution Permutation Networks

The SPN structure is widely used in many ciphers. Figure
1 shows a typical structure of SPN. Basically, an SPN con-
sists of several rounds of three components: Add Roundkey,
substitution or s-box layer and permutation layer. The Ad-
d Roundkey component is actually a bit-by-bit XOR of the
data block and the round key. The substitution layer is a non-
linear function applied to the data block executed by mapping
sub-blocks using a fixed non-linear function. The permutation
layer is a bit position change of the data block, usually, at the
cost of no hardware resources. A typical lightweight block

cipher usually consists of several identical rounds applying a
different round key in each round to finally get the ciphertext.

B. Structure of PRESENT, Piccolo, PRINTcipher and LED

Figure 2 shows the top level hardware structure of these
four ciphers. The combinational datapath contains the cipher
components used in each round and takes as input the round
key, Ki, and the cipher data as selected from either the
plaintext or the current state. The finite state machine, FSM,
controls the flow of data within the system.

MUX

Combinitional
datapath

State register

Key schedule

Ki

FSM

Rd_cnt

done

Sel_keyreg

Sel_reg

Sel_MUX

Plaintext

Fig. 2. Structure of Piccolo, PRESENT, Printcipher, and LED.

The major difference between these four ciphers is the com-
binational datapath and the key scheduling algorithms. This
will be discussed in the following section.

1) PRESENT Cipher: The PRESENT cipher is an ultra-
lightweight block cipher presented in 2007 [1]. The label
PRESENT-80 refers to the cipher structure with an 80 bit
length key, while PRESENT-128 uses a 128 bit length key.
PRESENT-80 consists of 31 rounds by using a structure of
substitution permutation network and it works based on a
block size of 64 bits. The key scheduling part of this cipher
is comprised of a 61 bit shift, an s-box and an XOR with the
round counter. Note that the last round of PRESENT cipher
does not include an s-box layer or permutation layer. The last
round key will XOR with the last state.

2) Piccolo Cipher: The Piccolo cipher is a lightweight
block cipher recently published in 2011 [2]. The cipher is
similar to the PRESENT cipher. It also has two different key
lengths: 80 bits and 128 bits. The 80-bit key version, Piccolo-
80, consists of 25 rounds. The combinational datapath of the
Piccolo-80 includes an round function, F, which consists of a
diffusion matrix which is taken from AES and two s-boxes.
The key scheduling part for Piccolo consists of two different
keys. One is whitening key wki which is used in the first and
last round of the encryption. The other one is round key rki
which has two different values for each round. For round i,
the two different round keys are labelled as rk2i−1 and rk2i.

3) PRINTcipher: PRINTcipher is a lightweight block ci-
pher published in 2010 [3]. Unlike the PRESENT cipher and
Piccolo cipher, the cipher operates on a 48 bit data block.
However, PRINTcipher still uses the conventional substitution
permutation network except the permutation is selected by
the key. It consists of 48 rounds. The key scheduling part for
PRINTcipher is more simple than the previous two ciphers.
In each round, 48 bits of key, SK1, are used to XOR with
the state and 32 bits of key, SK2, are used for the keyed-
permutation.

4) LED Cipher: The LED cipher is a lightweight block
cipher published in 2011 [4]. Similar to the above mentioned
three ciphers, LED cipher also uses an SPN structure. The
cipher operates on a 64 bit data block. It has four different key
sizes: 64 bit, 80 bit, 96 bit and 128 bit and they are labelled as
LED-64, LED-80, LED-96 and LED-128, respectively. LED-
64 needs 32 rounds to finish encryption while the others need
48 rounds to finish encryption. In the LED cipher, a step is
defined as four identical rounds without an Add RoundKey
process. The major difference between the LED cipher and
other three ciphers is the key scheduling component. LED
cipher does not need a round key for each round. Instead, it
needs a round key for each step.

III. DESIGN

The purpose of our design is to integrate PRESENT,
Piccolo, PRINTcipher and LED into one platform. Since
area and resource usage are the two major factors that we
consider, we use an iterative design in our implementation.

Figure 3 shows the top level design of our platform.
The components “PRESENT comb”, “Piccolo comb”,
“PRINTcipher comb” and “LED comb” are the combinational
datapaths of PRESENT, Piccolo, PRINTcipher and LED,
respectively. We have two different multiplexers: “MUX 1”
is used to select the input from plaintext or the state
register, while “MUX 2” is used to load the correct output
of the combinational datapaths into the state register. The
component “Rd cnt” is a counter which is used to indicate
the end of the encryption process. It also generates the round
constant which is used in the key scheduling algorithm. FSM
is a finite state machine which is the control unit of our
whole platform.

MUX_1

PRESENT Comb Piccolo Comb PRINTcipher Comb

State register

MUX_2

Key schedule

SK1,SK2
WK0,WK1,rk2i-1,rk2i

PRESENT_key

FSM

Rd_cnt

PRESENT_done

Piccolo_done

PRINTcipher_done

Sel_keyreg

Sel_reg

Sel_MUX2

Sel_MUX1

cipher_mode

64

Plaintext

LED Comb

LED key

LED_done

Round constant

64

64

Ciphertext

Key

80

Fig. 3. Top level design of platform.

To decrease the area and resources consumed by this
platform, we have tried to share some similar components
with different ciphers. For example, the “Add RoundKey”
process for PRESENT and Piccolo are almost the same, so
we only use a 64 bit XOR for these two ciphers. However,
in this way, we need to use an additional 64 bit 2-to-1
multiplexer and after examining the synthesis result, we
found that this approach is not worthwhile. In our final
design, we have decided that our approach to save the area is
based on sharing the state register within the cipher datapath
and the key register inside the key schedule block. The
penalty of this structure is that we need to use one more 64
bit 4-to-1 multiplexer to choose the correct data to be loaded
into the state register.

Before the encryption process, a 3 bit “Cipher mode”
signal must be loaded into the finite state machine to choose
the cipher that would be used in the encryption process.
Since the four ciphers need a different number of rounds to
finish the encryption process, we need three different done
signals from “Rd cnt” to indicate the end of the encryption
process. The block size of PRINTcipher is 48 bits while
PRESENT, Piccolo and LED have a 64 bit block. If we
choose to use PRINTcipher, the 16 most-significant bits of
output will be set to default value of 0.

Figure 4 shows the block diagram of our design. We have
5 input signals. “Cipher mode” is a 3-bit signal which is
used to choose the cipher to be used in the next encryption
process. For example, “000” means no cipher is chosen and
“001” indicates that the next cipher that will be used is
PRESENT. The “Plain valid” and “Key valid” signal is used
to indicate that plaintext or key are available at the input.
For the output, “Cipher valid” signal is the data valid signal
for ciphertext.

Figure 5 shows the state transition diagram of our control unit
The following steps show how our platform works:

1) Before the “Cipher mode” signal is changed to any
valid value for one of the four ciphers, the FSM will
stay in “IDLE” state.

2) After the “Cipher mode” signal is loaded into our Plat-
form, the FSM will step into “PRESENT IDLE”, “Pic-
colo IDLE”, “PRINT IDLE” or “LED IDLE” based on
the value of “Cipher mode” signal. For example, if
“Cipher mode” = “001”, then the FSM will step into

IDLE

PRESENT_IDLE Piccolo_IDLE PRINT_IDLE

Cipher_mode=present

Cipher_mode=piccolo

PRESENT_waitplain Piccolo_waitplain PRINT_waitplain

Key valid =
 1 ?Y

Key valid =
 1 ?

Yes

Key valid =
 1 ?

Yes Yes

NONONO

PRESENT_encryption Piccolo_encryption PRINT_encryption

Y
Plain_valid =
 1 ?

Yes

NO

Y
Plain_valid =
 1 ?

Yes

NO

Y
Plain_valid =
 1 ?

Yes

NO

Y
Present_done

= 1 ?

Yes

NO

Y
Piccolo_done

= 1 ?

Yes

NO

Y
Print_done =
 1 ?

Yes

NO

Cipher_mode=Print

LED_IDLE

LED_waitplain

Key valid =
 1 ?

Yes

NO

LED_encryption

Y
Plain_valid =
 1 ?

Yes

NO

Y
LED_done =
 1 ?

NO

Yes

Cipher_mode=LED

Fig. 5. State transition diagram of Platform

Platform

cipher_mode

Plain_valid

plaintext

Key_valid

key

ciphertext

Cipher_valid

64

64

80

Fig. 4. Block diagram of Platform.

“PRESENT IDLE” state.
3) In “PRESENT IDLE”, “Piccolo IDLE”,

“PRINT IDLE” or “LED IDLE” state, the FSM
will wait for the key that will be used in the
following encryption process. After the key is
loaded into the Platform, the FSM will step
into “PRESENT waitplain”, “Piccolo waitplain”,
“PRINT waitplain” or “LED waitplain” state and wait

for the plaintext that need to be encrypted.
4) After the plaintext is loaded into the Platform, the

FSM will step into the “PRESENT encryption”,
“Piccolo encryption”, “PRINT encryption” or
“LED encryption” state and start the encryption
process.

5) In “PRESENT encryption”, “Piccolo encryption”,
“PRINT encryption” or “LED encryption” state, when
the done signal indicate that the encryption process
is over, the FSM will step into “IDLE” or one of
the four “Cipher IDLE” states based on the value of
“Cipher mode” signal.

The four ciphers have separate control paths, which is used
to ensure that each cipher is not influenced by another.
Moreover, to ensure that the whole system works smoothly,
we also have fault-tolerant design for the following cases:

• The FSM will stay in IDLE state if there is no
“Cipher mode” signals loaded into it. Any plaintexts
and keys will be ignored.

• During the encryption process, any “Cipher mode”
signals, keys, and plaintexts will be ignored.

IV. IMPLEMENTATION AND SYNTHESIS RESULTS

We have investigated our design by targetting the Altera
Cyclone IV FPGA [6]. First, we synthesize these four ciphers
independently by using Quartus II [7] design software. Then
we synthesize our platform to give a comparison to the four
ciphers. All these four ciphers use an iterative implementation
to reduce the area and resource consumption. From Table
I, it is clear that our design saves a lot of resources, not
only in combinational logic elements (Comb LEs), but also in
sequential logic elements (Seq LEs). The total combinational
LEs consumed by these four ciphers should be 2964, while the
platform only consumes 2296 combinational LEs. This results
from simplification that occurs in the key scheduling compo-
nent when the four ciphers are combined. In fact, we find
that the key scheduling algorithms consume a large amount
of combinational LEs since the key scheduling algorithms of
these four ciphers are complex. Table II shows the number
of combinational LEs for the key scheduling consumed by
the four ciphers and our platform. This is also the reason
why the total combinational LEs of our platform is smaller
even though we add an extra 64 bit 4-to-1 multiplexer in
the platform. Moreover, the number of sequential LEs is
significantly reduced by sharing the state register and key
register. The total number of sequential LEs consumed by
these four ciphers should be 610, while the platform only
consumes 173 sequential LEs.

In Table III, we examine the performance of our system by
presenting the resulting throughput of the 4 ciphers using our
platform, as determined by the synthesis tools. The data of
throughput is based on the maximum frequency of our platfor-
m being 209.47 MHz. The throughput of the four ciphers are
different from each other since they need a different number
of rounds to finish the encryption process. The number of
clock cycles that are needed to finish the encryption process
is 32, 25, 48 and 48 for PRESENT, Piccolo, PRINTcipher
and LED, respectively, after the plaintext is loaded into our
platform.

TABLE I
RESOURCES FOR DIFFERENT CIPHERS

Cipher Comb LE Seq LE
PRESENT 613 153

Piccolo 809 153
PRINTcipher 516 143

LED 1026 161
Total 2964 610

Platform 2296 173

V. CONCLUSION

Our design successfully reduces the area and resource
consumption of four lightweight block ciphers. Since users
can choose the cipher they want to use by simply change the
“Cipher mode” signal, our design supplies a high flexibility
allowing the potential use of the platform for a variety of
applications. Since we use an iterative design, the throughput

TABLE II
NUMBER OF COMBINATIONAL LES OF KEY SCHEDULING

Cipher Comb LE of Key Scheduling Percentage of Comb LEs
PRESENT 328 53.5%

Piccolo 431 53.2%
PRINTcipher 242 46.9%

LED 604 58.9&
Total 1605 54.1%

Platform 869 37.8%

TABLE III
PERFORMANCE OF OUR IMPLEMENTATION

Cipher Throughput
PRESENT Throughput 419 Mbps

Piccolo Throughput 536 Mbps
PRINTcipher Throughput 209 Mbps

LED Throughput 280 Mbps

of our design is not very high. However, while resource usage
is often critical for embedded systems, required throughput is
typically very modest in most lightweight applications.

REFERENCES

[1] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M.J.B. Robshaw, Y. Seurin and C. Vikkelsoe, PRESENT: An Ultra-
Lightweight Block Cipher,vol. 4727, pp. 450-466, Lecture Notes in
Computer Science, Cryptographic Hardware and Embedded Systems -
CHES 2007.

[2] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda,
Toru Akishita and Taizo Shirai Piccolo: An Ultra-Lightweight Block-
cipher, vol. 6917, pp. 342-357, Lecture Notes in Computer Science ,
Cryptographic Hardware and Embedded Systems - CHES 2011.

[3] Lars Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B.
Robshaw PRINTcipher: A Block Cipher for IC-Printing, vol. 6225, pp.
16-32, Lecture Notes in Computer Science, Cryptographic Hardware and
Embedded Systems - CHES 2010.

[4] Guo, Jian., Peyrin, Thomas., Poschmann, Axel., Robshaw, Matt.,”The
LED Block Cipher”,vol. 6917, pp. 326-341, Lecture Notes in Computer
Science, Cryptographic Hardware and Embedded Systems - CHES 2011.

[5] Menezes, A., van Oorschot, P.C., Vanstone, S.: The Handbook of Applied
Cryptography. CRC press, Boca Raton, USA(1996).

[6] Altera Cyclone IV Device Handbook, available at
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf.

[7] Altera Quartus II Handbook, available at
http://www.altera.com/literature/hb/qts/quartusii handbook.pdf.

