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                                 Abstract 
   
  A compact and efficient implementation of the Advanced 
Encryption Standard (AES) is the desirable encryption IP core for 
any practical low-end embedded application. In this paper, we 
investigate various architectures for compact AES implementations 
in 0.18-um CMOS technology. We first investigate a new compact 
digital hardware implementation of AES s-boxes applying the 
discovery of linear redundancy in AES s-boxes. Although the new 
circuit has a small size, the speed of this implementation is also 
reduced. Encryption architectures without key scheduling 
employing four s-boxes and only one s-box are implemented using 
our new AES s-boxes, as well as based on other compact s-box 
structures. The comparison of six implementations indicates that 
the implementation using four s-boxes based on arithmetic 
operations in GF(24) has the best trade-off of area and speed. 
Therefore, using this s-box implementation, a complete encryption-
decryption architecture with key scheduling employing the four s-
box structure is implemented.  In order to be adaptive to various 
practical applications, we optimize the implementation with the 
four s-box structure to support five different operation modes.  
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1. Introduction 
 
Since the National Institute of Standards and Technology 
(NIST) announced the selection of Rijndael as the 
Advanced Encryption Standard (AES) in November 2001 
[1], AES has been accepted as the popular means to encrypt 
sensitive commercial and government data.  Various 
hardware implementation architectures and optimizations 
have been suggested for different applications. Those to 
achieve high speed are usually very expensive in hardware 
complexity. The large area of such architectures may not  be 
suitable for practical low-end embedded applications, such 
as smart cards, PDAs, cell phones, and other mobile devices. 
These small embedded applications do not require high 
speed or throughput, but are area critical. Therefore, 
reducing hardware resources to gain a compact and efficient 
implementation circuit is an increasing demand. 
    AES [1] is a symmetric-key block cipher, which supports 
different key lengths of 128, 192 or 256 bits. It is based on 
rounds of byte-oriented substitution and linear transforms 
with the fixed block length of 128 bits. There are five main 
functions for the encryption process, namely byte 
substitution, rotation, linear transformation, key addition, 
and key expansion. Unlike DES, the decryption process has 
a different structure from the encryption. However, with 

some change in key expansion, an equivalent decryption 
structure can be achieved using inverse functions for the 
byte substitution, rotation, and linear transformation.     
    

2. New Implementation of AES S-box      
 
    For the byte substitution operation, the 128-bit input data 
is taken as 16 bytes and each byte is substituted by the 
corresponding element in the s-box. In terms of AES 
hardware implementation, the most costly components are 
s-boxes. Schemes employing look-up tables or direct 
implementation of 8-bit Boolean functions cost a lot of 
hardware resources.  
    In [2], J. Fuller and W. Millan reported the important 
discovery of linear redundancy in AES s-boxes. By 
investigating the local structure of the Hamming distance 
between Boolean functions, Fuller and Millan used a new 
method to determine the equivalence between the 8 Boolean 
functions of the AES s-box outputs.  In generally, an n-input 
Boolean function g(x), x ∈ { 0,1} n, can be represented by its 
equivalent Boolean function f(x) using a binary matrix D, 
two binary vectors p and q, and a binary constant c. That is,  
  g(x) = f(Dx⊕p)⊕qx⊕c                                                     
For the AES s-box, the relations are simpler. Only binary 
matrix D and binary constant c are needed. Therefore, the 
output Boolean function bj(x) can be easily represented by 
the form bj(x) = bi(Dijx)⊕cj, based on the known bi Boolean 
function. 
    As noted in [2], this property of s-boxes gives a hint for 
compact hardware implementation. We only need to 
implement one Boolean function for the s-box and then 
utilize the transformations between the output bits to get the 
8-bit result of the whole s-box. The combinational logic 
implementation of a Boolean function and 7 mapping 
matrices should cost much less in hardware resources than a 
direct implementation of all eight 8-bit Boolean functions.  
    Let us label the s-box output byte as { b7b6b5b4b3b2b1b0} . 
The implementation of all Boolean functions is derived 
from the execution of least significant bit b0. In our scheme, 
the s-box consists of three main parts, namely the D matrix 
block, MUX, and b0_logic. Fig.1 shows the structure used to 
produce each output bit of the s-box. We refer to the new 
implementation structure as the LR s-box implementation 
since it is based on the concept of linear redundancy. 
    In the new s-box implementation, we apply factoring to 
minimize and reuse hardware resources for each block. 
After integrating all parts together, we use a 0.18-um CMOS 



standard cell library for the synthesis. The synthesis reports 
indicate that the circuit only needs the equivalent of 296 2-
input NAND gates totally. The D matrix block occupies 
40.9% of it. The b0_logic block takes 31.4% and the 
multiplexer takes 28.7%. 
 

 
Fig.1. S-box Implementation Structure Based on 

Linear Redundancy 
 
    Since it is very difficult to compare the performance of 
implementations using different technology libraries and 
synthesis tools, we applied the same technology and tools to 
other compact s-boxes implementations using composite 
fields based on GF (24) [3] and GF (22) [4]. The synthesis 
results presented in Table 1 show that the new 
implementation requires 11% fewer gates than the other two 
methods. 
 
        Table 1.  Area Complexity of S-box Implementations 
                        (1 gate = 2-input NAND ) 

Implementation 
GF (22) 
(gates) 

GF (24) 
(gates) 

LR 
(gates) 

Inverter 232 241 —— 
Isomorphism 27 23 —— 

Inv_isomorphism 31 30 —— 
Affine 

Transformation 
37 37 —— 

b0_logic —— —— 93 
D matrix block —— —— 121 

MUX —— —— 80 

S-box (totally) 327 331 296 

     
    Since our s-box is processing the data bit by bit, not byte 
by byte as in the other two methods, our implementation is 
about 8 times slower than other implementations. Moreover, 
the area calculation does not include the additional 8-bit 
shift registers required for storing the outputs of the s-boxes. 
 
3. Performance of Encryption Architectures 

 
    Based on the above studies on three compact 
implementations of the AES s-box, we implement the 

encryption architectures without key scheduling using an 
iterative loop structure. The encryption datapath is shown in 
Fig. 2, where the unlabelled boxes in the diagram represent 
registers. Since the architecture implements 4 s-boxes per 
iteration, a full round requires 4 iterations. 
 

 
                  Fig.2. Encryption Datapath for Four S-boxes 
 
    The 32-bit shift registers not only work as data registers 
but also implement the rotation function.  By using different 
s-box implementations, the architecture is changed a little. 
Because the LR s-boxes take 8 clock cycles to produce the 4 
bytes, while the linear transformation needs the 32-bit data 
at one time, we have to insert four 8-bit shift registers to 
store the output of s-boxes to prepare the input for the linear 
transformation. This increases the count of gates in the 
circuit. 
 

 
          Fig.3. Encryption Datapath for One S-box 
 
    In order to gain a more compact circuit, we have also 
explored the method of using only one s-box instead of four 
in the whole encryption architecture. The encryption 
datapath is shown in Fig. 3. Obviously, the new encryption 
architecture is really minimized a lot since the s-boxes are 
the most costly components in the circuit. However, the 
reduction of area is at the cost of speed. The encryption 



architectures of one s-box is 4 times slower than those of 
four s-boxes. 
     We have used 0.18 um CMOS library in our 
implementations and applied Synopsis as our synthesis tool. 
After simulation and synthesis, we find that for the four s-
box architecture using LR s-boxes, about 3.6k gates are 
required to implement the round operation with a maximum 
clock frequency of 131 MHz. The implementation with only 
one s-box requires about 2.5k gates with a maximum clock 
frequency of 123 MHz. The results are shown in Table 2. 
We also carry out other compact encryption 
implementations, which are based on the s-boxes 
implemented in composite GF (24) and GF (22). The results 
are also shown in Table 2 for comparison.  
 
       Table 2. Implementations Performance Comparison 
 

Encryption Datapath 
Area 

(gates) 
Throughput 

(Mbps) 
Throughput/Area   

(kbps/gates) 

Based on 4 S-boxes in 
GF (24) 

3569 179.78 50.37 

Based on 4 S-boxes in 
GF (22) 

3540 152.29 43.02 

Based on 4 LR S-boxes 
 

3581 50.84 14.20 

Based on 1 S-box in 
GF (24) 

2612 62.33 23.86 

Based on 1 S-box in 
GF (22) 

2624 50.53 19.26 

Based on 1 LR S-box 2545 12.22 4.80 

 
 
4. Encryption-Decryption Architecture with 

Key Scheduling     
 
    Based on the study of the AES s-boxes and encryption 
datapath, the comparison of six implementations in Table 2 
indicates that the implementation using four s-boxes based 
on arithmetic operations in GF(24) has the best trade-off of 
area and speed. Therefore we have implemented an 
encryption-decryption architecture with key scheduling 
using four s-boxes in GF(24).  In doing so, we merged the 
encryption and decryption functionality and generated 
circuitry to provide the on-the-fly key scheduling for 
encryption and decryption. In this implementation, we try to 
reuse and share the hardware components as much as 
possible to reduce the circuit size. The encryption-
decryption architecture and key expander are shown in Fig. 
4 and Fig. 5, respectively. 
 
4.1 Sharing Between Encryption and Decryption 

Processes 
    As was mentioned, the decryption process of AES has a 
different structure from the encryption. So in order to share 
the hardware resources between the encryption and 
decryption processes, we have modified the order of 

operations for the structure. Firstly, we exchange the order 
of byte substitution and rotation for the encryption process. 
Since both of the operations are byte-oriented, this does not 
alter the result of the round. The second change of structure 
is exchanging the order of liner transformation and adding 
the round key for the decryption process. This change 
causes a corresponding change in the key expander to add 
the inverse linear transformation at the end of key 
scheduling [2].   Also we can share the multiplicative 
inverse in GF (28) for the s-box and inverse s-box, as well as 
share hardware between the linear transformation and its 
inverse operation. 
 

 
           Fig. 4. Encryption-Decryption Datapath 
 

 
Fig. 5. Encryption-Decryption Key Expander 

 
4.2 Sharing Between Datapath and Key Expander 
    The key expander needs byte substitution operations to 
generate the key for encryption and decryption. Since the s-
boxes are one of the most costly components in the whole 
circuit, sharing between the datapath and the key expander 
is a good method to reduce the circuit size. We use 
multiplexers after the rotation operation to select to process 
cipher data or the round key. The key is taken after byte 
substitution back to the key expander to continue the key 



process. This sharing of s-boxes increases one clock cycle in 
datapath for each round in the encryption and decryption.  
    After simulation and synthesis, we find that the complete 
four s-box structure for encryption-decryption incorporating 
the key scheduling architecture requires about 6.7k gates 
with a maximum clock frequency of 52.7 MHz. The 
throughput of the circuit is 112.40 Mbps. 

 
5. The Five-Mode System   

 
  In order to be used for different applications, we have 
optimized the implementation to support five different 
operation modes: Electronic Codebook mode (ECB), Cipher 
Block Chaining mode (CBC), Cipher Feedback mode (CFB), 
Output Feedback mode (OFB), and counter mode (CTR) [5]. 
The five-mode architecture is shown in Fig.6. 
 

 
                         Fig.6. Five-mode System 
 
   ECB is the simplest operation mode since it uses the same 
key for each block of data and the input to the encryption-
decryption system is the current plaintext.  
    In CBC mode, the input to the encryption-decryption 
system is the XOR of the current plaintext and preceding 
ciphertext. The first input is the XOR of the first block of 
plaintext and an initialization vector (IV). Thus the system 
can generate different ciphertext for the same plaintext. We 
add multiplexers to choose between the IV and preceding 
ciphertext and plaintext. Also we insert a multiplexer to 
choose between the encryption and decryption data. 
    CFB mode uses AES as a stream cipher. The input to the 
encryption-decryption system is the preceding ciphertext 
and the ciphertext is the XOR of the plaintext and the output 
of the encryption-decryption system. Rather than process 
the data block by block, CFB divides the plaintext into 
small segments. So we use a shift register to shift the data 
by segment and feed it into the encryption-decryption 
system.  
    OFB mode is similar to CFB. The only difference is that 
the input to encryption-decryption system is the preceding 
output of the encryption-decryption system. So we use a 

multiplexer to choose between the CFB and OFB to feed 
back into the shift register. The ciphertext is produced as the 
XOR of the current plaintext and the output of the 
encryption-decryption system. 
    In CTR mode, the input to the encryption-decryption 
system is a counter. The counter is initialized as IV and 
increases for each block. The ciphertext is the XOR of the 
plaintext and the output of the encryption-decryption system. 
There is no chaining in counter mode.  
    The five-mode system is implemented by using 0.18-um 
CMOS standard cell library technology. The resulting 
circuit has the size of 11.3k gates (based on a 64-bit counter) 
with a throughput of 100.67 Mbps. 
 

6. Conclusion 
 
    By applying the discovery of linear redundancy in the 
implementation of the AES s-boxes, we have realized a new 
compact implementation of the s-box. Although the new 
resulting circuit of the s-box is about 11% less than the 
other compact s-box implementations, it is 8 times slower 
than the other compact implementations. For the complete 
encryption datapath, the implementation using four s-boxes 
based on arithmetic operations in GF(24) shows the best 
trade-off of area and speed. The one s-box structure uses 
16% less hardware resources but only has 26% of the speed 
of the four s-box structure. Employing sharing between the 
encryption and decryption processes and reusing common 
components for different blocks, an compact encryption-
decryption system using four s-boxes in GF(24) is obtained. 
A five-mode system is also presented that is able to support 
various low-end embedded applications. The final result 
shows that, with the architecture becoming complete, the 
difference between various compact implementations of 
AES s-box is not so important in the area consideration, and 
the four s-box structure is most suitable in terms of both size 
and speed. 
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