
Investigation of Compact Hardware
Implementation of the Advanced Encryption Standard

 Namin Yu Howard M. Heys

Electrical and Computer Engineering Electrical and Computer Engineering
Memorial University of Newfoundland Memorial University of Newfoundland

Email: namin@engr.mun.ca Email: howard@engr.mun.ca

 Abstract

 A compact and efficient implementation of the Advanced
Encryption Standard (AES) is the desirable encryption IP core for
any practical low-end embedded application. In this paper, we
investigate various architectures for compact AES implementations
in 0.18-um CMOS technology. We first investigate a new compact
digital hardware implementation of AES s-boxes applying the
discovery of linear redundancy in AES s-boxes. Although the new
circuit has a small size, the speed of this implementation is also
reduced. Encryption architectures without key scheduling
employing four s-boxes and only one s-box are implemented using
our new AES s-boxes, as well as based on other compact s-box
structures. The comparison of six implementations indicates that
the implementation using four s-boxes based on arithmetic
operations in GF(24) has the best trade-off of area and speed.
Therefore, using this s-box implementation, a complete encryption-
decryption architecture with key scheduling employing the four s-
box structure is implemented. In order to be adaptive to various
practical applications, we optimize the implementation with the
four s-box structure to support five different operation modes.

Keywords: Encryption, Cipher, Security, Digital Hardware

1. Introduction

Since the National Institute of Standards and Technology
(NIST) announced the selection of Rijndael as the
Advanced Encryption Standard (AES) in November 2001
[1], AES has been accepted as the popular means to encrypt
sensitive commercial and government data. Various
hardware implementation architectures and optimizations
have been suggested for different applications. Those to
achieve high speed are usually very expensive in hardware
complexity. The large area of such architectures may not be
suitable for practical low-end embedded applications, such
as smart cards, PDAs, cell phones, and other mobile devices.
These small embedded applications do not require high
speed or throughput, but are area critical. Therefore,
reducing hardware resources to gain a compact and efficient
implementation circuit is an increasing demand.
 AES [1] is a symmetric-key block cipher, which supports
different key lengths of 128, 192 or 256 bits. It is based on
rounds of byte-oriented substitution and linear transforms
with the fixed block length of 128 bits. There are five main
functions for the encryption process, namely byte
substitution, rotation, linear transformation, key addition,
and key expansion. Unlike DES, the decryption process has
a different structure from the encryption. However, with

some change in key expansion, an equivalent decryption
structure can be achieved using inverse functions for the
byte substitution, rotation, and linear transformation.

2. New Implementation of AES S-box

 For the byte substitution operation, the 128-bit input data
is taken as 16 bytes and each byte is substituted by the
corresponding element in the s-box. In terms of AES
hardware implementation, the most costly components are
s-boxes. Schemes employing look-up tables or direct
implementation of 8-bit Boolean functions cost a lot of
hardware resources.
 In [2], J. Fuller and W. Millan reported the important
discovery of linear redundancy in AES s-boxes. By
investigating the local structure of the Hamming distance
between Boolean functions, Fuller and Millan used a new
method to determine the equivalence between the 8 Boolean
functions of the AES s-box outputs. In generally, an n-input
Boolean function g(x), x ∈ { 0,1} n, can be represented by its
equivalent Boolean function f(x) using a binary matrix D,
two binary vectors p and q, and a binary constant c. That is,
 g(x) = f(Dx⊕p)⊕qx⊕c
For the AES s-box, the relations are simpler. Only binary
matrix D and binary constant c are needed. Therefore, the
output Boolean function bj(x) can be easily represented by
the form bj(x) = bi(Dijx)⊕cj, based on the known bi Boolean
function.
 As noted in [2], this property of s-boxes gives a hint for
compact hardware implementation. We only need to
implement one Boolean function for the s-box and then
utilize the transformations between the output bits to get the
8-bit result of the whole s-box. The combinational logic
implementation of a Boolean function and 7 mapping
matrices should cost much less in hardware resources than a
direct implementation of all eight 8-bit Boolean functions.
 Let us label the s-box output byte as { b7b6b5b4b3b2b1b0} .
The implementation of all Boolean functions is derived
from the execution of least significant bit b0. In our scheme,
the s-box consists of three main parts, namely the D matrix
block, MUX, and b0_logic. Fig.1 shows the structure used to
produce each output bit of the s-box. We refer to the new
implementation structure as the LR s-box implementation
since it is based on the concept of linear redundancy.
 In the new s-box implementation, we apply factoring to
minimize and reuse hardware resources for each block.
After integrating all parts together, we use a 0.18-um CMOS

standard cell library for the synthesis. The synthesis reports
indicate that the circuit only needs the equivalent of 296 2-
input NAND gates totally. The D matrix block occupies
40.9% of it. The b0_logic block takes 31.4% and the
multiplexer takes 28.7%.

Fig.1. S-box Implementation Structure Based on

Linear Redundancy

 Since it is very difficult to compare the performance of
implementations using different technology libraries and
synthesis tools, we applied the same technology and tools to
other compact s-boxes implementations using composite
fields based on GF (24) [3] and GF (22) [4]. The synthesis
results presented in Table 1 show that the new
implementation requires 11% fewer gates than the other two
methods.

 Table 1. Area Complexity of S-box Implementations
 (1 gate = 2-input NAND)

Implementation
GF (22)
(gates)

GF (24)
(gates)

LR
(gates)

Inverter 232 241 ——
Isomorphism 27 23 ——

Inv_isomorphism 31 30 ——
Affine

Transformation
37 37 ——

b0_logic —— —— 93
D matrix block —— —— 121

MUX —— —— 80

S-box (totally) 327 331 296

 Since our s-box is processing the data bit by bit, not byte
by byte as in the other two methods, our implementation is
about 8 times slower than other implementations. Moreover,
the area calculation does not include the additional 8-bit
shift registers required for storing the outputs of the s-boxes.

3. Performance of Encryption Architectures

 Based on the above studies on three compact
implementations of the AES s-box, we implement the

encryption architectures without key scheduling using an
iterative loop structure. The encryption datapath is shown in
Fig. 2, where the unlabelled boxes in the diagram represent
registers. Since the architecture implements 4 s-boxes per
iteration, a full round requires 4 iterations.

 Fig.2. Encryption Datapath for Four S-boxes

 The 32-bit shift registers not only work as data registers
but also implement the rotation function. By using different
s-box implementations, the architecture is changed a little.
Because the LR s-boxes take 8 clock cycles to produce the 4
bytes, while the linear transformation needs the 32-bit data
at one time, we have to insert four 8-bit shift registers to
store the output of s-boxes to prepare the input for the linear
transformation. This increases the count of gates in the
circuit.

 Fig.3. Encryption Datapath for One S-box

 In order to gain a more compact circuit, we have also
explored the method of using only one s-box instead of four
in the whole encryption architecture. The encryption
datapath is shown in Fig. 3. Obviously, the new encryption
architecture is really minimized a lot since the s-boxes are
the most costly components in the circuit. However, the
reduction of area is at the cost of speed. The encryption

architectures of one s-box is 4 times slower than those of
four s-boxes.
 We have used 0.18 um CMOS library in our
implementations and applied Synopsis as our synthesis tool.
After simulation and synthesis, we find that for the four s-
box architecture using LR s-boxes, about 3.6k gates are
required to implement the round operation with a maximum
clock frequency of 131 MHz. The implementation with only
one s-box requires about 2.5k gates with a maximum clock
frequency of 123 MHz. The results are shown in Table 2.
We also carry out other compact encryption
implementations, which are based on the s-boxes
implemented in composite GF (24) and GF (22). The results
are also shown in Table 2 for comparison.

 Table 2. Implementations Performance Comparison

Encryption Datapath
Area

(gates)
Throughput

(Mbps)
Throughput/Area

(kbps/gates)

Based on 4 S-boxes in
GF (24)

3569 179.78 50.37

Based on 4 S-boxes in
GF (22)

3540 152.29 43.02

Based on 4 LR S-boxes

3581 50.84 14.20

Based on 1 S-box in
GF (24)

2612 62.33 23.86

Based on 1 S-box in
GF (22)

2624 50.53 19.26

Based on 1 LR S-box 2545 12.22 4.80

4. Encryption-Decryption Architecture with

Key Scheduling

 Based on the study of the AES s-boxes and encryption
datapath, the comparison of six implementations in Table 2
indicates that the implementation using four s-boxes based
on arithmetic operations in GF(24) has the best trade-off of
area and speed. Therefore we have implemented an
encryption-decryption architecture with key scheduling
using four s-boxes in GF(24). In doing so, we merged the
encryption and decryption functionality and generated
circuitry to provide the on-the-fly key scheduling for
encryption and decryption. In this implementation, we try to
reuse and share the hardware components as much as
possible to reduce the circuit size. The encryption-
decryption architecture and key expander are shown in Fig.
4 and Fig. 5, respectively.

4.1 Sharing Between Encryption and Decryption

Processes
 As was mentioned, the decryption process of AES has a
different structure from the encryption. So in order to share
the hardware resources between the encryption and
decryption processes, we have modified the order of

operations for the structure. Firstly, we exchange the order
of byte substitution and rotation for the encryption process.
Since both of the operations are byte-oriented, this does not
alter the result of the round. The second change of structure
is exchanging the order of liner transformation and adding
the round key for the decryption process. This change
causes a corresponding change in the key expander to add
the inverse linear transformation at the end of key
scheduling [2]. Also we can share the multiplicative
inverse in GF (28) for the s-box and inverse s-box, as well as
share hardware between the linear transformation and its
inverse operation.

 Fig. 4. Encryption-Decryption Datapath

Fig. 5. Encryption-Decryption Key Expander

4.2 Sharing Between Datapath and Key Expander
 The key expander needs byte substitution operations to
generate the key for encryption and decryption. Since the s-
boxes are one of the most costly components in the whole
circuit, sharing between the datapath and the key expander
is a good method to reduce the circuit size. We use
multiplexers after the rotation operation to select to process
cipher data or the round key. The key is taken after byte
substitution back to the key expander to continue the key

process. This sharing of s-boxes increases one clock cycle in
datapath for each round in the encryption and decryption.
 After simulation and synthesis, we find that the complete
four s-box structure for encryption-decryption incorporating
the key scheduling architecture requires about 6.7k gates
with a maximum clock frequency of 52.7 MHz. The
throughput of the circuit is 112.40 Mbps.

5. The Five-Mode System

 In order to be used for different applications, we have
optimized the implementation to support five different
operation modes: Electronic Codebook mode (ECB), Cipher
Block Chaining mode (CBC), Cipher Feedback mode (CFB),
Output Feedback mode (OFB), and counter mode (CTR) [5].
The five-mode architecture is shown in Fig.6.

 Fig.6. Five-mode System

 ECB is the simplest operation mode since it uses the same
key for each block of data and the input to the encryption-
decryption system is the current plaintext.
 In CBC mode, the input to the encryption-decryption
system is the XOR of the current plaintext and preceding
ciphertext. The first input is the XOR of the first block of
plaintext and an initialization vector (IV). Thus the system
can generate different ciphertext for the same plaintext. We
add multiplexers to choose between the IV and preceding
ciphertext and plaintext. Also we insert a multiplexer to
choose between the encryption and decryption data.
 CFB mode uses AES as a stream cipher. The input to the
encryption-decryption system is the preceding ciphertext
and the ciphertext is the XOR of the plaintext and the output
of the encryption-decryption system. Rather than process
the data block by block, CFB divides the plaintext into
small segments. So we use a shift register to shift the data
by segment and feed it into the encryption-decryption
system.
 OFB mode is similar to CFB. The only difference is that
the input to encryption-decryption system is the preceding
output of the encryption-decryption system. So we use a

multiplexer to choose between the CFB and OFB to feed
back into the shift register. The ciphertext is produced as the
XOR of the current plaintext and the output of the
encryption-decryption system.
 In CTR mode, the input to the encryption-decryption
system is a counter. The counter is initialized as IV and
increases for each block. The ciphertext is the XOR of the
plaintext and the output of the encryption-decryption system.
There is no chaining in counter mode.
 The five-mode system is implemented by using 0.18-um
CMOS standard cell library technology. The resulting
circuit has the size of 11.3k gates (based on a 64-bit counter)
with a throughput of 100.67 Mbps.

6. Conclusion

 By applying the discovery of linear redundancy in the
implementation of the AES s-boxes, we have realized a new
compact implementation of the s-box. Although the new
resulting circuit of the s-box is about 11% less than the
other compact s-box implementations, it is 8 times slower
than the other compact implementations. For the complete
encryption datapath, the implementation using four s-boxes
based on arithmetic operations in GF(24) shows the best
trade-off of area and speed. The one s-box structure uses
16% less hardware resources but only has 26% of the speed
of the four s-box structure. Employing sharing between the
encryption and decryption processes and reusing common
components for different blocks, an compact encryption-
decryption system using four s-boxes in GF(24) is obtained.
A five-mode system is also presented that is able to support
various low-end embedded applications. The final result
shows that, with the architecture becoming complete, the
difference between various compact implementations of
AES s-box is not so important in the area consideration, and
the four s-box structure is most suitable in terms of both size
and speed.

References
[1] W. Stallings, “The Advanced Encryption Standard” ,
CRYPTOLOGIA, Volume XXVI No. 3, July 2002, pp. 165-
186.
[2] J. Fuller and W. Millan, “Linear Redundancy in S-
Boxes”, Fast Software Encryption 2003, Lecture Notes in
Computer Science 2887, Springer, 2003, pp. 74-86.
[3] J. Wolkerstorfer, E. Oswald and M. Lamberger, “An
ASIC implementation of the AES SBoxes” , The
Cryptographer's Track at the RSA Conference 2002,
Lecture Notes in Computer Science 2271, Springer, 2002,
pp. 67-78.
 [4] A. Satoh, S. Morioka, K. Takano, S. Munetoh, “A
Compact Rijndael Hardware Architecture with S-box
Optimization” , ASIACRYPT 2001, Lecture Notes in
Computer Science 2248, Springer, 2001, pp. 239-254
[5] W. Stallings, Cryptography and Network Security:
Principles and Practice, third edition, Prentice Hall 2003,
pp. 90-99.

