
A TIMING ATTACK ON THE CIKS-1 BLOCK CIPHER

Michael Furlong
Memorial University of Newfoundland
Electrical and Computer Engineering
St. John’s, NL, Canada, A1B 3X5

e-mail: michaelf@engr.mun.ca

Howard Heys
Memorial University of Newfoundland
Electrical and Computer Engineering
St. John’s, NL, Canada, A1B 3X5

e-mail: howard@engr.mun.ca

Abstract

The use of data-dependent transformations has been an area of in-
creasing interest for the designers of ciphers. In particular, data-
dependent permutations (DDPs) provide a fast and simple crypto-
logic primitive when implemented in hardware. However, when a
DDP block is naively implemented in software, it can reveal infor-
mation about the Hamming weight of the control vector applied to it.
Specifically, when a subkey is used as a control vector then informa-
tion about the Hamming weight of the subkey can be directly obtained
from timing information. This potentially leaves ciphers heavily de-
pendent on DDPs vulnerable to timing attacks.

In this paper, we examine the application of a timing attack to
the CIKS-1 symmetric block cipher. The analysis is motivated by the
possibility that a naive implementation of the DDPs used in CIKS-1
would result in encryption taking a time that is a function of data.
Such implementations are possible in software environments, typi-
cally in embedded systems such as smart cards. The methodology
of deriving the Hamming weight of the key using a known plaintext
attack based on timing information is outlined and is followed by a
discussion of the results. Further, a simple means of thwarting the
timing attack in a software implementation is presented.

Keywords— cryptography, security, block cipher, crypt-
analysis.

1 Introduction

The CIKS-1 encryption algorithm was introduced in [1]
as a symmetric key block cipher which would have an effi-
cient implementation in hardware and be able to thwart
both linear and differential cryptanalysis. However, for
some implementations, information regarding the nature of
the key is revealed by the time it takes to encrypt a mes-
sage.

The idea of a timing attack was first presented by Kocher
in [2]. The underlying principle of the attack is that infor-
mation about the time it takes to encrypt a message can
reveal information about the key to the cipher. Kocher
examined the applicability of the timing attack to asym-
metric crypto-systems, but noted that symmetric systems
may also be vulnerable to such attacks. For example, the
RC5 block cipher is made vulnerable when implemented on
a system that does not perform data-dependent rotations
in constant time [3].

CIKS-1 has been subjected to linear [4] and differential
[5] cryptanalysis. Both attempts have exploited weaknesses
in the data-dependent permutations showing weaknesses in
the cipher much greater than was anticipated in [1].

This paper will look at the weakness exposed in CIKS-
1 due to the timing information resulting from the data-
dependent permutation blocks. These DDP blocks com-

pose the majority of the cryptologic primitives used in the
CIKS-1 cipher. An attack is then presented which uses this
timing information to determine the Hamming weight of
the expanded key.

2 Description of the Cipher

The CIKS-1 cipher has a 64-bit block and consists of
eight rounds involving the application of eight 32-bit sub-
keys. The operation of one round of the cipher is presented
in Figure 1. We let L0 and R0 represent the left and right
half of the plaintext input, respectively, each half consist-
ing of 32 bits and we use the notation Li−1 and Ri−1 to
represent the input to the i-th round. The 32-bit subkeys,
Ki, 1 ≤ i ≤ 8, for each round are extended to 48 bits and
are applied as control vectors to two permutations. In the
figure, X >>> p represents a circular right shift by p bits
acting on vector X, Π1 and Π2 are fixed permutations, +
represents mod 22 addition of the bits in two vectors, and
the boxes labelled as n/m we shall denote DDPn/m repre-
senting a data-dependent permutation acting on n bits and
requiring a control vector of m bits in length.

Figure 1: One round of the CIKS-1 cipher [1]

3 Cipher Components

The CIKS-1 cipher uses four distinct types of cryptologic
primitives. Three of these, the fixed permutations, XOR,
and mod 22 addition all occur in constant time and thus can
be subtracted out of any timing information acquired. The
data-dependent permutation operations do provide variable
timing information in a naive implementation.

The primitives used in the cipher are described in the
following sections.

3.1 Data-Dependent Permutations

The data-dependent permutation is the vulnerable com-
ponent of the cipher. There is a direct relationship between
the number of swaps that occur in a DDP block and the
Hamming weight of the control vector. The DDP compo-
nent does not change the Hamming weight of the data upon
which it acts. This has been exploited by other attacks on
CIKS-1 as seen in [6]. The DDP components are labelled
P1 to P6 in Figure 1.

The DDP blocks can be of varying size and each DDP
block is composed of smaller DDP blocks. The smallest
DDP block has two inputs to be swapped, x0 and x1, and
one control bit, v, and is called DDP2/1. The general DDP
block, DDP2/1, and composition of other DDPs from the
DDP2/1 are illustrated in Figure 2.

Figure 2: DDP blocks [1]

In the DDP2/1, a control bit with a value of zero causes
the swap of two bits, which takes time t0, whereas a con-
trol bit of value one causes no swap and takes a time of t1,
where, as we shall see in Section 4, for a naive implemen-
tation t1 < t0. In this case, it can be seen that the number
of swaps in any DDP is directly related to the Hamming
weight of the control vector.

3.2 Fixed Permutations

Fixed permutations occur as Π1 and Π2, as well as three
seven-bit circular shifts. Like the DDPs, these elements do
not change the Hamming weight of the data upon which

they act. This fact becomes useful when we remove extra-
neous timing information from the first and last rounds of
the cipher. The fixed permutations themselves can be as-
sumed to operate in constant time, irrespective of the data.

3.3 XOR

The XOR component is the bit-wise XOR of 2 vectors
and is used to mix the key information in with the right
side of the data. It can be assumed that this operation
takes constant time to complete.

3.4 Addition

CIKS-1 uses mod 22 addition to combine the left and
right data at the end of each round. In hardware, sixteen 2-
bit addition components are used in parallel with the carry
output being ignored. In a software implementation it could
be implemented as a sequence of two bit additions. But
whether it is done in parallel or sequentially, the addition
can be assumed to take constant time.

4 Basic Principles of the Attack

The timing attack on CIKS-1 is applicable to implemen-
tations where the data-dependent permutations are exe-
cuted in non-constant time and it is possible to measure
accurately the timing associated with each encryption. For
example, this may be possible for an implementation of the
cipher in a single-threaded software environment, such as a
microcontroller like the ones found in smart cards.

The subkeys for each round are used as the control vec-
tors for the DDP32/48 block. This requires the duplication
of 16 bits of the key. Thus each subkey represents a 48-bit
value, for a total key length of 384 bits over all 8 rounds.
The 384-bit key is referred to as the expanded key, and it
is the Hamming weight of this vector that is determined by
the attack.

The weakness in CIKS-1 is exposed in an implementation
of the DDP2/1 where a swap is implemented as follows:

if (v == 0) {swap(x0, x1)}

where v is the control bit, and x0 and x1 are input bits
to be considered for swapping. If the control bit indicates
there should be a swap then the time to complete these
instructions will include the time to evaluate the expression
and the time it takes to execute the swap. Should the
control bit indicate that there should not be a swap, then
the time to execute the statements would only include the
time to evaluate the boolean expression.

The underlying principle of the attack is that when the
same key is exposed to sufficient data, the key-dependent
data-dependent permutations will reveal information which
is directly related to the Hamming weight of the expanded
key.

5 Proposed Attack

The weakness in the CIKS-1 cipher lies with the data-
dependent permutations. By obtaining timing information

about the execution of a DDP, the number of swaps and,
hence, the Hamming weight of its control vector can be
determined. So if we know the timing information for a
plaintext/ciphertext pair, we can directly relate it to the
number of swaps that took place in the DDP blocks of the
encryption process and, subsequently, we can use this to
determine the Hamming weight of the expanded key.

Because we know the plaintexts and the resultant cipher-
texts, we can calculate how many swaps occurred in DDPs
P1, P2, P4, and P6 in the first round, and P2, P4, and P6

in the last round. We cannot determine the swaps that oc-
cur in DDPs P3 and P5 in any round because they depend
directly on the unknown key.

Although we do not know the number of swaps for DDPs
P1, P2, P4, and P6 in rounds two to seven, we do have
information on the statistical properties of the swaps. For
example, for DDP32/80, assuming the 80-bit control vector
is generated by replicating 16 random bits three times and
16 random bits twice, the expected number of swaps is µ
= 40 and the variance is given by σ2 = 52.

For each plaintext/ciphertext/timing tuple, we maintain
a quantity Γi that represents the square of the differences
between the recorded number of swaps that occurred during
encryption and the estimated number of swaps that would
occur on average as a result of our guess at the Hamming
weight of the expanded key. (From the recorded number of
swaps that occurred we can account for the number of swaps
that we know in the first and last rounds, to remove some
uncertainty.) We can view the recorded number of swaps as
being composed of two quantities: w, the number of swaps
due to data being used as the control vector, and sHW , the
number of swaps due to the key being used as the control
vector. Similarly, we can view the estimated number of
swaps being composed of two quantities: µw, the expected
value of the total number of swaps due to data being used
as the control vector, and s̃HW the number of swaps that
would occur due to our guess at the Hamming weight of
the key. Hence, we may write Γi as:

Γi = [(w + sHW)− (µw + s̃HW)]2

For each of N total plaintext/ciphertext/timing tuples,
we calculate Γi. We then can compute the expected value
of Γi, which we label φ, such that

φ =
1
N

N∑
i=1

Γi

Since φ is the expected value of Γi, we can then write:

E{Γi} = E{[(w + sHW)− (µw + s̃HW)]2}
= E{[(w − µw) + (sHW − ˜sHW)]2}
= E{(w − µw)2 + 2(w − µw)(sHW − ˜sHW)

+(sHW − ˜sHW)2}
= E{(w − µw)2}+ E{2(w − µw)(sHW − ˜sHW)}

+E{(sHW − ˜sHW)2}

We can see that the first term of the expected value is just
the variance of w, σ2

w, that the second term will go to zero
since the expected value of the difference between a random
quantity and its mean is zero, and that the third term is
simply a constant. Hence,

φ = σ2
w + (sHW − s̃HW)2

Now, for the correct guess at the key Hamming weight,
sHW = s̃HW and (sHW − s̃HW)2 = 0. In all other cases,
(sHW − s̃HW)2 > 0, since it is a square, and thus a positive
quantity. We may then conclude that φ will be at a min-
imum value when the correct Hamming weight is guessed.
Through the application of this attack, we can determine
the Hamming weight of the expanded key.

In order to estimate the number of swaps that occurred in
the encryption due to data-based control vectors, we must
calculate the expected values of the number of swaps in
data-controlled DDP blocks. As can be seen from Figure
1, there are only two types of DDPs used: DDP32/48 and
DDP32/80. The value µw is the sum of the expected values
of the different DDP blocks, which are simply equal to half
the number of control vector bits. The expected number
of swaps that occur in all the relevant DDP blocks in the
cipher that are not controlled by subkey bits is, hence, µw =
888. Note that σ2

w can also be computed, accounting for the
dependencies of control vector bits in the DDPs. However,
the value of σ2

w is not dependent on the key guess and, since
the attack only requires the identification of the smallest
value of φ, the value of σ2

w is not needed in the attack.

6 Experimental Results

We investigated the attack by executing an experiment
where 1000 random keys were generated. For each of the
keys, a number (N) of plaintexts was randomly generated.
Each of the plaintexts was encrypted and timing informa-
tion about that encryption was recorded. Trial attacks were
executed on plaintext sets of size N = 100, 1,000, 10,000,
and 100,000. Using the recorded information, Γ and φ were
calculated and the key Hamming weight with the minimum
value of φ was selected as the correct value. It should be
noted that the Hamming weight of the key is for the fully
expanded 384-bit key, which is likely derived from a smaller
initial cipher key.

As can be seen in Figure 3, an increase in the num-
ber of ciphertexts available increases the likelihood of cor-
rectly guessing the Hamming weight of the expanded key.
Approximately a 94% success rate can be obtained with
only 104 plaintext/ciphertext pairs. Given 105 plain-
text/ciphertext pairs, 100% of the Hamming weights were
successfully identified.

7 Timing Attack Safe Implementation

The weakness in the cipher arises from a naive software
implementation of the DPP blocks. In order to thwart the
timing attack, one simply needs to restructure the imple-
mentation of the DDP2/1 function such that it executes

Figure 3: Attack success rate

in constant time. Initially one might be tempted to use
the boolean algebra provided by many programming lan-
guages. However this may still reveal timing information
as many compilers allow for “short-circuiting” when com-
puting boolean expressions. In this case, should an expres-
sion evaluate to be true based on the first condition, the
remainder of the expression will not be computed and thus
would take less time, again revealing timing information.
The following solution is recommended for use in C or C-
like programming languages:

void ddp2_1(int& x0, int& x1, int v) {
int y0 = (x0 * v) + (x1 * (1 - v));
int y1 = (x0 * (1 - v)) + (x1 * v);
x0 = y0;
x1 = y1;

}

This approach executes in constant time and thus does not
reveal information about the data x0, x1, and v. There
may be more efficient solutions that also hide information
about the Hamming weight of the control vector, but this
solution will fit into the interface provided by the naive
implementation studied in this paper.

8 Conclusion

In this paper, we have described a weakness in the CIKS-
1 block cipher. We have demonstrated the effectiveness of
a timing attack on an implementation of CIKS-1 where the
time to execute a data-dependent permutation takes non-
constant time. This situation could arise where the cipher
has been implemented in software with a naive, straightfor-
ward implementation of the data-dependent permutations.
Such an implementation may occur on a microcontroller in
an embedded system such as a smart card.

The timing attack presented in this paper does rely on
accurate timing measurements on individual encryptions.
This information would be difficult to obtain in a mutli-
threaded environment like most modern general purpose
operating systems. However, it is quite conceivable that

the attack can be modified and implemented in an envi-
ronment where the timing measurements are noisy. In any
case, this paper shows a vulnerability which designers must
be aware of when implementing CIKS-1, as indeed must
be the designers of any cipher using DDPs as cryptologic
primitives. Fortunately this concern can be eliminated by
ensuring the DDPs occur in constant time, thus protecting
the cipher from this timing attack.

References

[1] A. Moldovyan and N. Moldovyan, “A Cipher Based on
Data-Dependent Permutaitons,” Journal of Cryptology,
vol. 15, pp. 61–72, 2001.

[2] P. Kocher, “Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems,” in Lec-
ture Notes in Computer Science, Vol. 1109: Advances
in Cryptology - CRYPTO ’96. Springer-Verlag, 1996,
pp. 104–113.

[3] H. Handschuh and H. M. Heys, “A Timing Attack on
RC5,” in Lecture Notes in Computer Science, Vol. 1556:
Selected Areas in Cryptography - SAC ’98. Springer-
Verlag, 1999, pp. 306–318.

[4] C. Lee, D. Hong, S. Lee, S. Lee, H.-J. Yang, and
J. Lim, “A Chosen Plaintext Linear Attack on Block
Cipher CIKS-1,” in Lecture Notes in Computer Science,
Vol. 2513: 4th International Conference on Information
and Communications Security - ICICS ’02. Springer-
Verlag, 2002, pp. 456–468.

[5] B. J. Kidney, H. M. Heys, and T. S. Norvell, “A Differ-
ential Attack on the CIKS-1 Block Cipher,” in Proceed-
ings of IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE 2004). IEEE, 2004.

[6] ——, “A Weight Based Attack on the CIKS-1 Block
Cipher,” in Proceedings of the Newfoundland Electri-
cal and Computer Engineering Conference, St. John’s,
Newfoundland, Nov 2003.

