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Abstract — In this paper we examine a new pri-
vate key encryption algorithm referred to asCAST.
Specifically,we investigatethe security of the cipher
with respectto linear cryptanalysis. From our anal-
ysis we conclude that it is easyto selectS-boxesso
that an efficient implementation of the CAST algo-
rithm is demonstrably resistantto linear cryptanal-
ysis.

�
. Introduction

The CAST encryption algorithm [1][2] belongsto a
classof privatekey block cipherswhich arecomposed
of substitutionboxes(S-boxes)with fewer input bits
thanoutputbits. Recently,a softwareimplementation
of theCAST cipherhasbeendevelopedfor application
in computersecurityproducts[3]. In [2], it is suggested
that,with anappropriatenumberof substitutionrounds,
the CAST cipher is resistantto differentialcryptanaly-
sis [4]. In this paper,we show that the CAST cipher,
with an appropriatenumberof rounds,is resistantto
linear cryptanalysis[5].

Similarly to theDataEncryptionStandard[6] andother
proposedblockciphers,theCASTalgorithmconsistsof
a seriesof roundsof substitutionsin order to achieve
the “confusion” and “dif fusion” principles suggested
by Shannon[7]. The basicalgorithmstructureis illus-
tratedin Figure1. The algorithmencryptsby dividing
the � -bit plaintextinput block in half. The right half-
block, ��� , is transformedby a round function � and
then XORed bit-by-bit to the left half-block, ��� . The
right andleft halvesarethenswapped.This is repeated
for the number of rounds in the cipher, � . Conse-
quently,the algorithmmaybe viewedasthe following
iteratedoperation:

�
	�������
����	�����	�������	� 	��� ��� 	! (1)

This format is identical to all so-calledDES-like ci-
phers. The novelty of CAST is the roundfunction � .

The round function is implementedusing S-boxesof
dimension"$#&% where %��'�)(+* and "-,.% .

The exampleCAST systempresentedin [2] usesfour/ #102* S-boxesto implementa 64–bitblockcipher. The
inputs to the four S-boxesaredeterminedby XORing
a 32–bit sub-key1 � 	 to the right half-block and then
dividing the half-block into four

/
–bit groups. The

32–bitoutputsof the four S-boxesareXORedtogether
to producetheoutputof thefunction � . Letting 3545�76��
representthe 32–bit outputof the 8 -th S-boxgiven an
8–bit input 6 , theoperationof theroundfunctionmay
be representedby

�
��� 	 ��� 	 �9�
:;
4=<� 3 49> �@? A�B	 �C�D? A7B	FE (2)

where � ? A7B	 is the 8 -th byte of � 	 and � ? A7B	 is the 8 -th
byte of � 	 .
In the following sectionwe considerthe applicationof
linear cryptanalysisto the CAST algorithm.

�G�
. Linear Cryptanalysis of CAST

Linear cryptanalysis[5] is one of the most powerful
attackson privatekey block ciphers.It hasbeenshown
thatDESis theoreticallysusceptibleto theattackusing* :!H known plaintexts.

To attacka block cipherusinga basiclinear cryptanal-
ysis technique,thecryptanalystis interestedin thebest
linear approximationof the form:

I 	KJL�  M N � I 	NOP�RQ94=JS�  M M �RQ94UTV��WRXYJZ�  M N ��W[X�\  (3)

Let the probability that equation (3) is satisfied be
representedby ]_^ . If the magnitude ` ]G^Ra�bc(2*G` is
large enoughand sufficient plaintext-ciphertextpairsd
1 The sub-keys are determined by a key scheduling algo-
rithm. For details of the CAST key scheduling algorithm see
[8].
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Figure 1. CAST Encryption Algorithm

are known, the equivalent of one key bit, expressed
by the XOR sum of the key bits on the right side of
equation (3) may be determined as the value that most
often satisfies equation (3).

An appropriate linear equation is derived by combining
a number of linear approximations for the S-boxes
of different rounds such that intermediate terms (i.e.,
terms that are not plaintext, ciphertext, or key terms)
are cancelled. Let the best linear approximation of an
S-box be satisfied with probability ��� . If the number
of S-box linear approximations combined to give the
overall expression is � , it can be shown [5][9] that� �����
	��� ��� ������ � � � �
	��� � ��� (4)

From [5], the number of known plaintexts, � � , re-
quired to give a 97.7% confidence of the correct key
bit is given roughly by����� � ������	��� � �! �� (5)

It is obvious that � � can be increased by decreasing� � � �
	��� � . Hence, selecting S-boxes for which � �#"	��� will clearly aid in resisting the attack. As well,
increasing the number of S-box terms, � , involved in

the system linear approximation, increases the number
of known plaintexts required in the cryptanalysis.

Consider the following nonlinearity measures based on
the Hamming distance to the nearest affine function.2

Let the distance between two $ -bit functions, % and& , be given by')( %+* &),#- ./10)24365 �87�9 : % (<; ,�=>& (?; ,<@ � (7)

Then the nonlinearity of an $ -bit boolean function %
is defined to beA ( % ,B- $�C?D '�( %E* &),F 0�G (8)

where H is the set of all $ -bit affine boolean functions.

The nonlinearity of an $JI�D S-box K is given as the
minimum nonlinearity over all non-zero linear combi-
nations of the S-box output functions:A ( K ,L- $�CMD AONQPRSUT ��V S % S<WX6Y8Z\[\[\[\Z ]6^�_�`Ma?[\b<c?Z4]8d\d�]fe?gh�i (9)

where j�k represents the l -bit function of the m -th output
bit of the S-box.

For a network in which the S-boxes have nonlinearities
satisfying npo8qsrut
n�v kxw , we havey z+{+|
}�~��Ey�� � v���� | n v kxw� � v � (10)

Using the result of following theorem, it is possible to
determine an approximate lower bound on the number
of known plaintexts, ��� , required for linear cryptanaly-
sis if a lower bound on the nonlinearity of the S-boxes
is known.

Theorem 1: Consider a 64–bit, � -round CAST cipher
which uses four ����� � S-boxes. The number of known
plaintexts, � � , required in the cryptanalysis satisfies

� ��� ��� ���f�� y z { |�}�~���y �f� � (11)�
2 An � -bit affine function is defined to be a function of
the form �E�U�����>���s�Q�� ¢¡£ ��Q¤¥¤¦¤6�§��¨L¡£¨

(6)

where

�©�«ª ¡   ¤¥¤¥¤�¡ ¨#¬
represents the  -bit input and

��®�¯�°�±�²4³�´
,

±¶µ¸·�µ  .
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Proof (Sketch): Since an output bit of the round func-
tion � is the result of the XOR of the correspond-
ing output of all 4 S-boxes, a linear approximation
of � must involve linear approximations of all 4 S-
boxes. Assume that the half-block inputs to round � ,���

and � � , are known. Then the linear approxima-
tion of

�����	��
 � ���� must involve the 4 S-boxes of
round � and the linear approximation of � ����� must in-
volve at least the 4 S-boxes of round ����� . Hence, a
2–round linear approximation must involve at least 4
S-boxes. Since an � -round linear approximation must
involve at least as many S-boxes as ����� iterations of
the best 2–round approximation, the number of S-boxes
involved in an � -round linear approximation must be
at least � 
������ �����! 
 �"� . Substituting into (4) and
(5) results in (11). #
Consider a 64–bit, � -round CAST cipher with a 64–bit
key. Assume that the $&%('�� S-boxes have nonlinearities
greater than or equal to )+* �-,.
0/!�

. (In Section 12131
we discuss the generation of such S-boxes.) In this
case, 4 5&6�7��8���94 
 �;:=< . The number of plaintexts
required for linear cryptanalysis is listed in Table 1
for various values of > . For comparison we have
included the corresponding values for DES. Note that
the CAST algorithm is comparable in size to DES and
is significantly more resistant to linear cryptanalysis.

It should be noted that the bound for ?A@ arises by
determining the number of known plaintexts required to
determine one key bit. To determine all key bits using
linear cryptanalysis, the number of plaintexts will be
significantly larger then the bounds listed. For example,
for >CBEDGF , ? @IH�H�J�KLK . Clearly, in comparison with
a theoretical security level of J�KNM (based on the number
of encryptions required in an exhaustive key search),
a 16–round CAST network constructed using S-boxes
with O�P3QSRUTCF�V is secure against linear cryptanalysis
in the strictest theoretical sense. As well, a 12–round
CAST cipher requires much more than J�W3X known
plaintexts, an impractical memory requirement for a
cryptanalyst and we can therefore state that such a
cipher is secure against a practical linear cryptanalysis.
The bound on the 8–round cipher appears low where
64–bit key security is required. However, it should
be noted that it would be a very difficult task for a
cryptanalyst to find a linear approximation close to
the lower bound. Certainly for systems with security
requirements on the order of 40 key bits or less, an
8–round cipher would be adequately secure against
linear cryptanalysis.

Y Z [\ ]
Required Known Plaintexts, ? @_^` ab

Number of
Rounds, > c CAST d DES ef g hi

8 j 234 k 222 lm n op
12 q 250 r 234 st u vw
16 x 266 y 247 z{ | }

Table 1. Number of Required Plaintexts
in Linear Attack (O�~�����B�F!V )�9�9�

. Selection of Highly Nonlinear
S-boxes

In this section we discuss the likelihood that a CAST ci-
pher designer can find S-boxes which satisfy a suitable
level of nonlinearity. The design procedure outlined in
[2] for constructing S-boxes involves the use of maxi-
mally nonlinear “bent” functions for the � output func-
tions of the S-boxes to ensure high nonlinearity for the
individual output functions. It is further recommended
that the designer verify the nonlinearity of the S-box by
checking all linear combinations of output functions.

In the following analysis we shall examine the like-
lihood of an ���I� S-box being selected which will
display good nonlinearity of O�P3QSRAT J ~�� < . Specifi-
cally, for a 64–bit cipher, from the development of the
previous section, we are interested in the generation of� ��� J S-boxes which have O�P�QSR�T�F!V . To make the
analysis tractable we shall assume that the J � functions
generated from considering the linear combinations of
the � S-box outputs are all randomly generated and in-
dependent. Hence, we ignore the constraints of using
bent functions and that the J � functions are derived
from a set of � functions.3

Given a function � , consider the probability of ran-
domly selecting � so that ��P����2��R�� J ~�� < . The prob-
ability of selecting � so that ��P����3�9RUB J ~�� < is given
by ��� ��B J ~�� <�� B�� J ~J ~�� <� �¡ J <�¢U£ (12)¤
3 The independence assumption cannot be strictly correct.
Consider, for example, that the linear combination of two
linear functions is itself linear. However, it is extremely
unlikely that any of the S-box functions are linear and we
shall therefore assume that all functions (and their linear
combinations) are selected from a set of randomly generated
functions.
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Using Stirling’s approximation of ����� ��� J�� � P	� ¡�
 R� ,(12) can be approximated by� � �AB J ~�� < � ��� � � J ~������ J ~���� ��� ���	� <
� J P �L~ < ¢��������! �"$#	%& ')(+*-,.(+* ��� %0/ �  ���  �"�132$4

(13)

It canbe shownthat, for reasonablevaluesof 5 , the
probability of 6 ')7�8)9 %;: ( * ��� is boundedas

<>= 6 : (
* ����? : <@= 6BA ( * ���C? 4 (14)

Since any two linear 5 -bit functions are exactly a
distanceof

( * �ED apart,the eventsthat a function
7

is
lessthana distanceof

( * ��� from two different linear
functionsare mutually exclusive. Hence,

< =GF '	7 %H: ( * ��� ? :.I (15)

where I A ( *KJ D�L < = 6MA ( * ��� ? andwe haveusedthe
fact that thereare

( *NJ D 5 -bit affine functions.

Finally, in our analysiswe usethe assumptionthat the(+O
functionsdeterminedfrom all linear combinations

of the P output functionsof an S-boxmay be consid-
eredindependentlyin ananalysisof their nonlinearities
andthat the probability distributionof the nonlinearity
of eachfunctionis thesameasthatof a randomlygen-
eratedfunction. As a result, the probability that an
S-box hasa nonlinearity that is less than or equal to( * ��� is given by

< = F '0Q %R: ( * ��� ? :TS ,-' S , IU% �3V 4 (16)

Assumingthat
(+O L IW:X:TS , this may be approximated

by <Y= F ')Q %K: (
* ���C?XZ ( O L I 4 (17)

ConsidertheCAST algorithmwith 5[AT\ and P]A_^ ( .
In this case,from (13),

< ' 6MAa`�b %�c ( �ed3� . Therefore,Ifc ( ��g0h , resultingin
< ' F '0Q %H: `+b % Z ( �iD3D . Hence,

we expectat least j�j 4 j+k�l of all randomlygenerated\�mH^ ( S-boxesto havenonlinearitiesof at least64. This
implies that most S-boxeshavesuitablenonlinearities
and, therefore,selectingcandidateS-boxesand then
screeningthosecandidatesto eliminateany with low
nonlinearitiesassuggestedin [2] is a reasonableS-box
designprocedure.

n�o
. Summary

Our analysisof the CAST encryption algorithm has
determineda theoreticalboundon the securityagainst
linearcryptanalysisgiven theminimumnonlinearityof
the S-boxesused. The results suggestthat a 64–bit
CASTcipherwith a64–bitkeybasedon \imp^ ( S-boxes
is secureagainstlinear cryptanalysiswith a moderate
numberof rounds. Furtheranalysissuggeststhat suf-
ficiently nonlinearS-boxesare easyto find by simple
randomgeneration.We concludethat constructionof
efficientblockciphersresistantto linearcryptanalysisis
straightforwardusing the CAST encryptionalgorithm
designprocedures.
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