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ABSTRACT

In this paper, we examine the security of the class
of substitution-permutation private-key block ci-
phers with respect to linear and differential crypt-
analysis. A new S-box nonlinearity criterion is
proposed and it is shown that S-boxes satisfying
this criterion and having good diffusion improve
remarkably the ability of an SPN to resist linear
cryptanalysis and differential cryptanalysis.

1. INTRODUCTION

A basic substitution-permutation encryption net-
work (SPN) consisting of a number of rounds of
substitutions (S-boxes) connected by bit permuta-
tions is an implementation of a private-key block
cipher [1]. The SPN structure is directly based on
the concepts of “confusion” and “diffusion” intro-
duced by Shannon [2]. Letting N represent the
block size of a basic SPN composed of R rounds of
n X n S-boxes, a simple example of an SPN with
N =16, n =4, and R = 3 is illustrated in
Figure 1. Keying the network can be realized by
XORing the key bits with the data bits before each
round of substitution and after the last round. In
this paper, we consider specifically 64-bit ciphers
based on 8 x 8 S-boxes and which use a permuta-
tion that has the i-th output bit of the j-th S-box
connected to the j-th input bit of the i-th S-box.

Linear cryptanalysis, suggested by Matsui [3],
is a known plaintext attack which uses knowledge
of plaintext-ciphertext pairs to break the cipher.
Differential cryptanalysis, as introduced by Biham
and Shamir [4], is a chosen plaintext attack which
examines the changes in the ciphertext in response
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Figure 1: SPN with N =16, n =4, and R =3

to controlled changes in the plaintext input. To
attack an SPN, linear cryptanalysis makes use of
a highly probable linear approximation, while dif-
ferential cryptanalysis is implemented by finding
a highly probable differential characteristic. Both
a highly probable linear expression and a highly
probable characteristic are achieved by exploiting
the local properties of the network, specifically the
S-box properties. Thus the design of S-boxes is
crucial to the strength of an SPN.

In this work, a new S-box nonlinearity criterion
is proposed. S-boxes satisfying this criterion and
having good diffusion [5] improve the ability of an
SPN to resist linear cryptanalysis and differential
cryptanalysis noticeably.



2. BACKGROUND

In the application of linear cryptanalysis to SPNs,
the best R-round linear approximation of the form
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is of interest, where F;,C;, and K} represent a
plaintext, ciphertext, and key bit, respectively.

This linear approximation is derived by com-
bining a number of probable linear expressions of
S-boxes from different rounds such that any in-
termediate terms (i.e., terms that are not plain-
text, ciphertext, or key terms) are eliminated. As
we will see later, the number of known plaintexts
required to attack an SPN using basic linear at-
tack is related to p, the probability of an S-box
linear approximation. The probability p that a
linear expression holds for an S-box is defined as
p = NS(«,3)/2", where NS(a,f) is defined as
follows.

Definition 1 [3]: For a given n x n S-box, S,
NS(a,p) is defined as the number of inputs to
S, where a mod-2 linear combination of the input
bits specified by vector « is equal to a mod-2 linear
combination of output bits specified by vector .
In particular,

NS(a, ) = #{z € {0,1}"|L(z, s(z)) holds} (2)

where s(z) is the output of the S-box correspond-
ing to input z, and L(z, s(x)) is the following linear
expression:
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where the symbol z[i] represents the i-th bit of
vector z. When |p — 1/2| is small for all o and 5,
the nonlinearity of the S-box is said to be high.
Differential cryptanalysis is dependent on the
existence of a highly probable (R — 1)-round char-
acteristic. The existence of a highly probable (R—
1)-round characteristic is determined by two fac-
tors [5]: (1) the distribution of S-box XOR differ-
ence pairs (Az, Ay), where Az is input XOR dif-
ference of 2 input vectors, z1 and zo, (i.e., Az =
z1 ® x2), and Ay is output XOR difference of an

S-box, (i.e., Ay = s(z1) ® s(zz) ), and (2) the
diffusion of bit changes within the network.

As shown in [5], for an SPN, S-boxes with good
diffusion properties can increase the diffusion of bit
changes within the network.

Definition 2 [5]: An S-box satisfies a diffusion
order of A\, A > 0, if, for wt(Az) > 0,

A+ 1—wt(Ax)

'wt(Ay)>{ A ,wt(Az) < A +1

,wt(Az) > A +1
(4)
where Az and Ay denote the input XOR differ-
ence and the corresponding output XOR difference
of an S-box respectively, and wi(- ) refers to the
Hamming weight of the specified argument.

3. S-BOX DESIGN CONSTRAINTS

In this section, constraints on S-boxes that effec-
tively strengthen an SPN against linear cryptanal-
ysis and differential cryptanalysis are proposed.

3.1. Nonlinearity Requirement

In the linear cryptanalysis of an SPN, a crypt-
analyst is interested in finding a linear approxi-
mation which is deduced by combining a number
of probable linear expressions of the involved S-
boxes. Suppose there are § S-boxes involved in the
derivation of a linear approximation of the overall
cipher, and the probable linear expression of the
i-th S-box holds with probability p;, then, assum-
ing the S-box inputs are independent, according
to Lemma 3 in [3] the linear approximation holds
with probability

4
pr=1/2+2" [ (pi — 1/2). (5)
1=1

Also, it is shown in [3] that, for a basic linear
attack (algorithm 1), the number of known plain-
texts required to guess a correct key bit in equation
(1) is approximated by Ny, where

Np, = [pr, — 1/2|7% (6)
By rewriting expression (5) as

0

pL=1/2+1/2]][(2pi - 1) (7)
=1



it is evident that pz, is determined by two factors:

1. §, the number of S-boxes involved in the
overall cipher linear approximation, and

2. p;, the probability with which the linear ex-
pression of the i-th S-box is satisfied.

In [5], |pr, — 1/2| was bounded by considering
d and |p; — 1/2| separately. The probability p; of
a linear expression of an S-box was bounded with

lpi —1/2] < |pe —1/2| (8)

where p. represents the probability of the best lin-
ear approximation of any S-box in the network and
it can be determined by

|pe —1/2] = (2" = NLpn) /2" (9)

where n is the size of an S-box and N L,,;, is the
lowest nonlinearity of an S-box [5], i.e., for all S-
boxes

12771 — NS(a, B)| < 2"' — NLpin. (10)

Actually, after studying the structure of a linear
path in an SPN, Theorem 1 is found and a new
bound for p; is then established.

Theorem 1 Let 8, 2 < B < 2n, represent the
number of input bits plus output bits in a linear ap-
prozimation of an S-box. Assume all S-bozxes use a
B-term linear approximation of a specific 8. Then
the best cipher linear approzimation must involve
B/2 S-bozes on average per round.

Proof: Consider an S-box in the r-th round. Since
each input bit or output bit of an S-box connects
to a different S-box in the previous or next round,
based on the assumption, the number of involved
S-boxes in the previous plus the number of in-
volved S-boxes in the next round must be at least
0.

Since we are interested in the best cipher linear
approximation, if a scenario in which the number
of involved S-boxes in the previous and next round
is [ exists, then the theorem is proven. It is trivial
to show that such scenarios do exist. O

Now for a given value of 8, bound the linearity
property of an S-box by

n:(B) < n(pB) (11)

where 7;(8) = |p;(8)—1/2| with p;(3) representing
the probability for a -term linear approximation
of the i-th S-box in the cipher approximation and
n(B) = |p<(B) — 1/2| with p.(5) representing the
probability of the best [-term linear approxima-
tion of any S-box in the network.

Subsequently, letting nz, = |pr, —1/2|, based on
Theorem 1, we have

) é
=2 m(® <2 '[[n(B).  (12)
i=1 i=1
Hence, since d = (3/2- R where R is the number of

rounds in the SPN,

nr, < 1/2(2n(8))7* %, (13)

According to (13), to prevent a cryptanalyst from
using some specific §-term linear expressions to
obtain a linear approximation with a higher prob-
ability, a straightforward way is to establish the
equation
(2n(2))* = (20(8))", (14)

for all values of 8 > 2. Constraint (14) can be used
to minimize the upper bound on 7n; by selecting
S-boxes with a small 2-term linear approximation
bound and weighting the effects of the linear ap-
proximations of different § to provide a uniform
upper bound on 77, across all values of .

However, we have observed, by experimenta-
tion, that the relation

2n@2)¥? 2<p<3

n@)”* a<p<om Y

2ni(B) < {
leads to a tighter bound on the probability of the
best linear approximation, and is reasonable to
adopt as the constraint put on an S-box.

In setting the bound for the probability of the
best linear approximation, the number of involved
linear expressions of S-boxes (i.e., the number of
involved S-boxes) needs to be calculated based on
the network structure (i.e. permutations), and this
number can be related to an equivalent number of
2-term S-boxes involved in a linear approximation
according to constraint (15).

Using this approach we have written a program
to calculate the equivalent number of 2-term S-
boxes involved in a linear approximation for all



possible cases in which the number of S-boxes in
each round is some value between 1 and 8. It is
found that, for an 8-round SPN, with constraint
(15) the smallest number of equivalent 2-term S-
boxes involved in a linear approximation is 22/3.
For example, one scenario is that from the 1st
to 8-th round, the number of actual S-boxes is
1,1,1,2,2,1,1, and 1, respectively.

Let us calculate the number of known plain-
texts required in the basic linear attack. As men-
tioned above, under condition (15) the equivalent
number of 2-term linear expressions involved in
the best linear approximation of an 8-round SPN
is 22/3. Therefore, according to (13), for an 8-
round SPN |pr, — 1/2| < 1/2(2(2))??/3. This sig-
nifies that in the basic linear attack the number of
plaintexts required to deduce one equivalent bit of
key is at least 4/(27(2))**/3. From the results of
our experiments, 8 x 8 S-boxes satisfying (15) with
2n(2) = 1/8 can be achieved. Hence, if an 8-round
SPN is constructed using 8 x 8 S-boxes satisfying
(15) with 2n(2) = 1/8, |pr, —1/2| is 272 and it re-
quires at least 26 known plaintexts to determine
one key bit using the basic linear attack.

In contrast, in [5], (8) is used to bound the
probability of a linear expression of an S-box, with
the value of 2|p. — 1/2| = 1/4. Since the mini-
mum number of S-boxes involved in a linear ap-
proximation is 8, the resulting |p, — 1/2| is 2717
as determined by (7) and the number of required
plaintexts in a basic linear attack is at least 234.

3.2. Diffusion Order Requirement

S-boxes with a high diffusion order can enhance
the ability of an SPN to resist differential crypt-
analysis [2]. By using the depth-first-search algo-
rithm in [5], S-boxes are examined for the relation-
ship between their nonlinearity property and diffu-
sion order. It is determined that S-boxes with dif-
fusion order of 1 which satisfy the suggested non-
linearity requirement with a small value of 27(2)
are easily found. For example, the proportion of
S-boxes satisfying (15) with 21(2) = 1/8 and se-
lected from randomly generated S-boxes with dif-
fusion order of 1 is 0.267.

4. CONCLUSION

In accordance with the new nonlinearity require-
ment suggested in this paper, S-boxes whose fewer-
term linear approximations are highly nonlinear
are found. These S-boxes can be selected from the
S-boxes with diffusion order of 1. Thus the ability
to resist linear cryptanalysis and differential crypt-
analysis of an SPN that is constructed from these
S-boxes is improved remarkably.
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