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Abstract

Linear cryptanalysis and differential cryptanalysis are two recently introduced, pow-
erful methodologies for attacking private-key block ciphers. In this paper, we examine
the application of these two cryptanalysis techniques to a CAST-like encryption algo-
rithm based on randomly generated s-boxes. It is shown that, when randomly generated
substitution boxes (s-boxes) are used in a CAST-like algorithm, the resulting cipher is
resistant to both the linear attack and the differential attack.

1 Introduction

As the need for privacy and authentication is now generally recognized by the telecom-
munications community, a widely adopted private-key encryption algorithm is becoming
an increasingly important objective in the development and analysis of cryptographic algo-
rithms. For some time, the Data Encryption Standard (DES) [16] has been the most widely
used and trusted encryption algorithm. However, DES is about twenty years old and has
recently become vulnerable to cryptanalysis due to its small key size. In addition, DES was
designed explicitly for fast hardware implementation, making the current extensive use of

DES in software rather anomalous.



The most successful attack on DES to date is an exhaustive key search machine that
can be built for about one million U.S. dollars and which can find a DES key in about 3.5
hours [20]. In recent years, DES has also been subjected to two powerful attacks known as
linear cryptanalysis [11] and differential cryptanalysis [4]. Although these attacks have been
very successful against many encryption algorithms such as FEAL [19] and Khafre [14], DES
has been resistant, in a practical sense, to both attacks. Nonetheless, it seems inevitable
that we need an alternative to DES which can be easily implemented in software, has a
long enough key, a fast encryption/decryption rate, and is resistant to known attacks. The
CAST encryption algorithm [1, 3] was developed with these objectives in mind.

Similarly to DES and other proposed block ciphers, the CAST algorithm consists of a
series of rounds of substitutions in order to achieve the “confusion” and “diffusion” principles
suggested by Shannon [18]. In CAST, the substitutions are accomplished using large m x n
mappings, referred to as s-boxes, which have m input bits and n output bits such that
m < n. The large s-boxes are implemented to efficiently eliminate the permutations found
in DES between rounds of substitutions and, as a result, CAST is a very efficient algorithm
for software implementations [3]. CAST is currently employed in several computer security
products [17].

In this paper, we consider a CAST-like cipher constructed with randomly generated
s-boxes and examine the resistance of such a cipher to both linear cryptanalysis and dif-
ferential cryptanalysis. The resulting analysis suggests that random s-boxes can be used

effectively to create a CAST-like cipher resistant to both types of attacks.



2 Structure of CAST

The initial implementation of CAST [1, 3] is a 64-bit private-key block cipher with a
64-bit key which encrypts by using a number of rounds consisting of 8 X 32 s-boxes. The flow
of data between consecutive rounds in CAST is similar to that of DES. Both algorithms
implement a round function F' which operates on the right half of the data block. The
output of F' is XORed bit-by-bit with the left half of the data block to produce a new left
half-block and then the left and right half-blocks are swapped. An R-round algorithm is

illustrated in Figure 1 and may be viewed as the following iterated operation:

Li=R;_ (1)

and

Ri=L; 1®F(Ri_1,K;) (2)

for 1 <¢ < R where R; and L; represent the right and left half-blocks, respectively, and K;

represents the sub-key associated with round 2. In the last round, we have

Rr = Rp_1 (3)

and

LRZLR_l@F(RR,KR). (4)

CAST and DES differ significantly in the implementation of the round function F. In
DES, the round function F' expands 32 bits of input data to 48 bits using an expansion table

E. The expanded data is then XORed with 48 key bits and fed into eight 6 x 4 s-boxes.
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Figure 1: Enciphering Algorithm of CAST
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The output of the 8 s-boxes are concatenated together and then permuted according to a
permutation function P to form the 32 output bits of F. In CAST, the round function
XORs 32 bits of input data with 32 key bits and feeds the result into four 8 x 32 s-boxes.
The 32 output bits of the four s-boxes are XORed together to form the 32 output bits of
F. The round functions of DES and CAST are shown in Figure 2. The original version of
CAST [1, 3] uses s-boxes based on a class of highly nonlinear boolean functions referred to

as “bent” functions [13]. As a result, the generation of the s-boxes is complicated and it
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Figure 2: Round Functions of DES and CAST

is difficult to analyze the security of the cipher. In addition, a key scheduling algorithm is
used to assign keys to the various rounds [2]. In this paper, to simplify the analysis and
promote a simple s-box generation procedure, we consider a CAST-like algorithm which
uses randomly generated s-boxes instead of s-boxes generated from bent functions and uses

independent keys in each round of substitution.

3 Linear Cryptanalysis of the CAST-like Cipher

In this section, following the development of [6], we examine the resistance of the CAST-
like encryption algorithm to linear cryptanalysis. In particular, we establish a relationship

between the probability that a linear approximation of a given number of rounds of a CAST-



like cipher holds and the minimum nonlinearity of the s-boxes used in the construction of

the round function.

3.1 Application of Linear Cryptanalysis

In [11] and [12], Matsui describes the first known plaintext attack that can break the
full 16-rounds of DES faster than exhaustive search. The attack described by Matsui is
known as linear cryptanalysis and was experimentally shown to break DES using 2*3 known
plaintexts [12].

The fundamental principle of linear cryptanalysis is to find a linear approximation that

relates subsets of plaintext bits, ciphertext bits, and key bits in the following manner:
P,eP,e --0F0C,®C;,®d - - &Cj, =K, ©®Kp, ®---® Ky, (5)

where 21,19, ... ,%q, 71,72, -.. ,Jp and ki, ko, ... , k. denote fixed bit positions of the plain-
text P, ciphertext C, and key K, respectively.

Suppose p; is the probability that equation (5) holds. The effectiveness of the linear
approximation depends on the magnitude of |p; — % I — %| is large enough and sufficient
plaintext-ciphertext pairs are known, it is possible to determine one equivalent key bit in
the form of the XOR sum of the key bits on the right-hand-side of equation (5) as the value
that most often satisfies the equation.

In general, a linear approximation of the cipher as represented by equation (5) is formed
by combining a number of s-box linear approximations for different rounds such that any
terms that do not involve plaintext bits, ciphertext bits, or key bits are cancelled. Suppose
that equation (5) is formed by combining « s-box linear approximations and that the best

s-box linear approximation has a probability pg (i.e., the magnitude |pg — %| is the largest



among all the « s-box linear approximations). If we assume that the inputs to the s-boxes
involved in the linear approximation are independent and uniformly distributed random

variables, from [11] it follows that
1 _ 1
i3l £27 Iy = 2 ©

It is also shown in [11] that the number of known plaintexts in a linear attack is inversely
related to |p; — 1/2| and, hence, the number of known plaintexts required in the analysis
can be increased by selecting s-boxes such that pg — % and by increasing the number of
s-box linear approximations, «, involved in the overall approximation.

Let us denote an m-bit affine boolean function as
HX)=a@ a1 X1®...®a,Xy, (7)

where X = [X; ... X,,] represents the m-bit input and a; € {0,1}, 0 < ¢ < m. The distance

between two m-bit boolean functions, s and ¢, can be defined to be

dis,t)= ) [s(X)@®t(X)]. (8)

Xe{0,1}™

The nonlinearity of an m-bit boolean function s is defined in the following way:
N L(s) = mind(s,t
(s) = min d(s, ) 9)

where A is the set of all m-bit affine boolean functions. The definition of nonlinearity can

be extended to an m x n s-box S as follows [15]:

NL(S) = min NL(éais,-) (10)
=1



where s; is the m-bit boolean function of the ¢-th output bit of the s-box S. Hence, the
nonlinearity of an m X n s-box is just the minimum nonlinearity over all non-zero linear
combinations of the n m-bit boolean functions of the s-box.

Counsider a cipher that consists of s-boxes of size m X n and assume that each s-box in
the cipher has a nonlinearity greater than or equal to N L,,;,. It then follows that the best

s-box linear approximation has a probability pg where

2m—1 - Nme

= (1)

Ips— 2| =
P3 9! =

From Figure 2, an output bit of the round function F' of CAST is the XOR sum of the
corresponding output bit of all 4 s-boxes. Consequently, since each output bit depends on
the input from all 4 s-boxes, a linear approximation of F' must involve linear approximations
of all 4 s-boxes. If one of the s-boxes is not included in the approximation, then the output
bit from that s-box that is used in the XOR to determine the output of the round function
will occur randomly with respect to the linear approximation and the approximation will
hold with a probability of 1/2, negating its usefulness in a linear attack. Referring to
Figure 3, if the values of L;_; and R;_; in round ¢ are known, a linear approximation of
L;y1 must involve a linear approximation of the output of the F' function in round s since
Liy1 = L;—1 ® F;. This means that the 4 s-boxes in round ¢ must be involved in the linear
approximation. Similarly, it is not difficult to see that a linear approximation of R;;1 must
involve at least the 4 s-boxes of round 7 + 1. Regardless of whether both L;;; and R;y1 or
just one of them is involved in the linear approximation, a 2-round linear approximation
must involve at least 4 s-boxes. Since an r-round linear approximation must involve at least

as many s-boxes as /2 iterations of the best 2-round approximation, the number of s-boxes
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Figure 3: Flow of Data in Round ¢ and Round ¢ 4+ 1

involved in an r-round linear approximation is at least a = (r/2) - 4 = 2r. Putting o = 2r

in equation (6) results in the following estimate:

1 o 1, |
|19l—§|522 1|Pﬂ—§|2 : (12)

If 8 x 32 s-boxes with N L,,;, = 64 are used in a cipher, the best s-box linear ap-
proximation for such a cipher will have probability pz such that |pg — %| = % =1
Consequently, using (12), it is possible to construct Table 1 which shows the upper bound
on the value of |p; — 1/2| for an r-round linear approximation of a CAST-like cipher that
uses 8 X 32 s-boxes with N L,,;,, = 64. As a comparison, the corresponding value of |p;—1/2]
for an r-round linear approximation of DES [11] is also shown in the table. ! Note that

the linear approximation of the CAST-like cipher occurs with a probability much closer to

1/2 than the linear approximation of DES for the same number of rounds. Moreover, the

'One must be cautious in drawing conclusions about the immunity of a cipher to linear cryptanalysis based
on an upper bound on the value of |p; — 1/2| since it is still conceivable that multiple linear approximations
may be combined to effectively attack a cipher [7]. However, clearly it is a desirable objective to minimize
|p1 — 1/2| for the linear approximations of a cipher and, therefore, |p; — 1/2| is a valid metric with which to
compare the performances of different ciphers.



Number of lpi — 1/2]

Rounds r | CAST DES
8 21T 1122 x2°1
12 22 [ 1.19 x 2717
16 233 [ 1.49 x 2=

Table 1: |p; — 1/2| for Linear Approximation of CAST-like Cipher (with s-boxes having
N Lyin = 64) and DES

numbers in Table 1 for the CAST-like cipher are just an upper bound. In practice, it is
likely that a linear approximation of a CAST-like cipher will be much closer in probability

to 1/2.

3.2 Selecting S-boxes of High Nonlinearity

In the previous section, we considered a CAST-like cipher using 8 X 32 s-boxes with a
minimum nonlinearity greater than or equal to 64. For a general mXxn s-box this corresponds
to a nonlinearity of 22, In this section, we examine the likelihood of randomly selecting
an s-box S of size m x n such that its nonlinearity N L(S) < 2m~2.

The number of ways of choosing two m-bit boolean functions, s and ¢, so that the

distance between them, d(s,t), equals 2™ 2 is given by
m—2 2m ‘
N(d=2""?) = ( om—2 ) (13)

Also it is not difficult to show that, in general, Ez%_l < ]: ) < < k:];él ) Hence, the

number of ways of selecting s and ¢ so that d(s,t) < 2™~ 2 is bounded as
Nd<2" ) <N{d=2""2). (14)

Since any two m-bit linear functions have a distance of exactly 27! from each other, the

events of a function s having a distance of less than 2™ 2 from two different linear functions

10



are mutually exclusive. Also, since there are 27! m-bit affine functions, we can get a bound

on the number of ways to select a function with a nonlinearity of less than 2™~

N(NL(s) < 2™ 3 < p (15)

where p = 2+ N (d = 2m72).

Consider the modulo-2 sum of k output functions of an s-box. We may consider that a
particular k — 1 of the functions in the sum are chosen independently and there are 2(k—1)2™
ways to choose these functions. The remaining function can then be chosen so that the
nonlinearity of the sum is less than 2™~2 and the number of ways this can be done is upper
bounded by p. Since there are k ways to choose which function will be used to satisfy
the nonlinearity bound, an upper bound on the number of ways of selecting %k functions so
that their sum satisfies a nonlinearity of less than 22 is given by k - p - 26=12™ " There
are ( Z ) ways of selecting the k bits from the n output functions of the s-box. Hence,
summing over all values of &, 1 < k < n, and dividing by the number of ways to choose n
random m-bit boolean functions gives an upper bound on the probability that an s-box S

has a nonlinearity less than 272

P(NL(S) < 2™ %) < p- En: [k: < Z ) 2“‘?“2”] /2m" (16)
k=1

By applying Stirling’s approximation of k! =~ v2nk- (%)k it can be shown that, for 8 x 32
s-boxes, the right side of (16) evaluates to less than 2733 and, hence, P(N L(S) < 64) < 2733,
Hence, the probability of randomly generating an s-box with a nonlinearity of less than 64

is very unlikely. In recent experiments, no randomly generated 8 X 32 s-boxes were found

for which NL(S) < 72 [21].

11



4 Differential Cryptanalysis of the CAST-like Cipher

In this section, we examine the resistance of the CAST-like encryption algorithm to
differential cryptanalysis. An analytical model for the distribution of entries in the XOR
difference distribution table for the round function is first developed. Based on the distri-
bution of entries, we can form highly probable characteristics. In particular, we focus on

finding the best iterative characteristic that is applicable to the CAST-like cipher.

4.1 Distribution of Entries in the XOR Table

Differential cryptanalysis is a chosen plaintext attack which makes use of the highly
probable occurrences of sequences of output XOR differences at each round given a par-
ticular plaintext XOR difference. The foundation for the differential attack is the ability
to predict the output XOR difference of the round function F' given the knowledge of the
input XOR difference to that round. Information on the likelihood of possible output XOR
values given particular input XOR values is available in an XOR, difference distribution
table [4]. In the XOR table, each row corresponds to a particular input XOR value, each
column corresponds to a particular output XOR value, and the entries themselves represent
the number of possible input/output pairs corresponding to the input and output XOR
values. The XOR table can be used to determine the probability that a particular output
XOR will occur given an input XOR. We refer to this as the difference probability and it
is derived by dividing the value of the entry in the XOR table by the number of possible
output XORs. By concatenating highly probable XORs together, one can construct a highly

probable sequence of differences referred to as a characteristic. The higher the likelihood of

12
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a characteristic, the fewer chosen plaintexts required for differential cryptanalysis. 2

In reference to the CAST-like cipher, consider a set of four 8 x 32 randomly generated
s-boxes where we denote the 8-bit inputs to the 4 s-boxes as X1, X2, X3 and X and
the corresponding outputs of the 4 s-boxes as S1(X(1), S5(X?), S5(X3)), and Sy (X ).
Let AX( represent the bitwise XOR of two values for X (). For the complete 32-bit round

function, given an input XOR value AX = [AXD AX® AXG) AX®)], the output XOR

*In a strict sense, differential cryptanalysis only requires the existence of highly probable differentials
where a differential refers to an output XOR difference after a particular round given a plaintext XOR dif-
ference [9]. This differs from a characteristic since a characteristic specifies the exact output XOR difference
of each round required to achieve the final output XOR. In practice, it is difficult for a cryptanalyst to
discover the existence of a highly probable differential without examining the cipher for highly probable
characteristics. Hence, it is appropriate to consider the likelihood of the existence of highly probable charac-
teristics since, without them, discovery of highly probable differentials is unlikely. It should noted, however,
that an upper bound on the probability of a characteristic is not an upper bound on the probability of a
differential and cannot be used to prove that the cipher cannot be attacked.

13



value, AW, in Figure 4 is given by the following equation:
AW =P AY" (17)
=1
where AY() = (X)) @ S;( XD @ AXD),
Let wt(-) represent the Hamming weight of the specified argument and define the fol-

lowing functions:

o [0 ifwi(AXD)=0 |
f(AX(V)—{ 1 if wt(AX@) £0 (18)
and
4 .
o(AX) =2 s(ax (19)

=1
Thus, g(AX) is the number of s-boxes that have non-zero XOR inputs when AX is applied
to F. Consider that an entry in the XOR table of the round function corresponding to
input XOR value AX = [AXMD AX® AXG) AX®H] and output XOR value AW is given

as the following sum of products:

SIS X DAYD = ) x #{XD|AY?) =5}
a b ¢

x#{XONAY®) =} x #{XDAYD = AW @ a @b & c}] (20)

Since each of the product terms must be an even number (or zero), each of products must
be a multiple of 16 (or zero). If AX® = 0, AY®) = 0 for all values of X© and the
corresponding term in the product is 28. Thus, the XOR table contains zeroes or multiples
of 23277‘(](AX')‘

Since AW is 32 bits long, it can assume at most 232 distinct values. However, each

AY ) can assume at most 27 values for a particular AX (). This occurs because, for a fixed

14



AX_ there will be 28/2 = 27 unordered pairs of (X9, X(V @ AX (). If each of these pairs
gives rise to a distinct value for AY () then AY() can take at most 27 distinct values.

Since the output vectors of the s-boxes are randomly generated, the values obtained by
the XOR sum of the AY®) ’s will also be randomly distributed. This results because the
J-th bit of the output XOR, AWj, is just the XOR sum of the j-th bit of the four s-box
output XORs, é AY]@. Since the output bits are randomly generated, it follows that each
output XOR b;t:10f an s-box has an equal chance of being 0 or 1. Assuming independence
between the output XOR bits of different s-boxes, the XOR sum of the j-th bit of the four
s-box output XORs will also have an equal chance of being 0 or 1. Consequently, one can
conclude that AW may assume any one of the 232 possible values with equal probability.

In fact, as the possible values of AW can be found by trying all the 279(2%) different
combinations of AY(D) @ AY®) & AY®) @ AY™, the distribution of output XORs for a
given input XOR is equivalent to tossing 279(2%) balls randomly into 232 bins with each
ball having a weight of 232-79(AX) " We wish to determine the distribution of the balls in
the bins.

Let Ay be a random variable representing the number of bins having £ balls when N

balls are being tossed randomly into M bins. It has been shown that for large N and M [5],

e~

TG (21)

E[Ar] ~ M

For M = 232 and N = 22%, E[A;] will be the expected number of AW values that have
XOR entries of 16*k for a particular AX when g(AX) = 4. By dividing E[A;] by M, one
can get the expected fraction of AW values that have XOR entries of 16*k. For choices

of AX such that g(AX) = 3, the corresponding entries in the XOR table are multiples of

15



g(AX) | Entry Value | % of Entries

4 0 93.94

4 16 5.87

4 32 0.183

4 48 3.83x1073
4 64 5.97 %« 107>
4 80 747 %1077
4 96 7.78 1079
4 112 6.94 « 1011
3 0 99.95

3 2048 0.0488

3 4096 1.19%107°
3 6144 1.94 %1079
3 8192 2.37x10713

Table 2: Expected Distribution of Entry Value in XOR Table for ¢(AX)=4 and g(AX)=3

2048 and, in this case N = 22!, A summary of the results for g(AX) = 4 and g(AX) = 3
is listed in Table 2.

For AX’s which have g(AX) = 2 or 1, the corresponding non-zero entries in the XOR
table will be multiples of 2% and 225, respectively. In both cases, the probability that
a non-zero entry is not 2% or 225, respectively, is negligible. Finally, for the trivial case
where g(AX) = 0 (i.e., wt(AX) = 0), there is an entry of magnitude 23? for the column
corresponding to AW = 0 and the entries are zero for all the other columns.

Note that as the value of g(AX) decreases, the corresponding magnitudes of the entries
in the XOR table will increase and it is extremely unlikely for an XOR table corresponding
to g(AX) = 7 to have non-zero entries that are greater than those of an XOR table for

g(AX) = j where j < 1.

16



4.2 TIterative Characteristics

Input XOR differences of zero to the round function F' always lead to output XOR
differences of zero with a probability 1. This is called the 1-round trivial characteristic.
If such a trivial characteristic appears in every k rounds of encryption and the plaintext
is equal to the ciphertext after & rounds of encryption, then we say we have an k-round

iterative characteristic.

4.2.1 2-Round Iterative Characteristics

Let @ represent a particular 32-bit XOR vector. The flow of data in a 2-round iterative

characteristic is shown in Figure 5 and has the following form [8]:

(®,0) [input]

0 « 0 with probability 1 [round 1]
0 «— ® with probability p [round 2]
(®,0) [output]

where the elements in brackets represent the left and right half XOR values, respectively,
and the arrow represents the mapping of the round function F.

Define the probability ¢ = P(h(AX,0) = 16 | g(AX) = 4) where h(AX, AW) is the
entry in the XOR table corresponding to an input XOR value of AX and a value of AW
for the output XOR. Since AW is randomly distributed among the 23? possible values, for
a particular AX with g(AX) = 4, one can use Table 2 to predict that ¢ = 0.0587.

Let p(h, g) represent the expected number of rows in the XOR . table that will have the

entry value h(AX,0) given g(AX). Note that the number of AX such that g(AX) =4 is

17
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(2% — 1)*. Thus, for g(AX) = 4 and h(AX,0) = 16, u(h,g) = ¢ * (28 — 1)* =~ 2.5 % 10% if
we assume that the occurrence of h(AX,0) = 16 for different AX’s are independent. An
entry of 16 in the XOR table means that the corresponding difference probability p will be
21762 = 2728 and the resulting probability for the 2-round characteristic is pq, = p = 2725
Using a similar analysis for g(AX) = 3, 2 and 1, one can get the values listed in Table 3.
Note that it is highly unlikely to find an s-box with which to construct a 2-round iterative
characteristic so that g(AX) = 1 and p = 277 . In fact, it would not be difficult to select
only injective s-boxes thereby preventing the occurrence of a 2-round iterative characteristic
based on a difference with a probability of p = 277. However, it is very likely that an s-box
will exhibit a 2-round iterative characteristic with ¢(AX) = 2 and p = 274, Therefore, we

shall assume that the probability per round for the best 2-round iterative characteristic is

(2714 =27,

4.2.2 TIterative Characteristics with more than 2 Rounds

According to [8], the flow of data in a 3-round iterative characteristic is as follows:

18



g(AX) | h(AX,0) 0 »
4 16 2.5%105 | 2=28
4 32 7.8%108 [ 2727
4 48 1.6¥10° | 2 264
4 64 2.5%103 | 2726
4 80 39 9257
4 96 33%10-1 | 2-254
3 2048 39%10% | 221
3 4096 7.9 520
3 6144 | 1.3¥10°3 [ 27194
2 21 15 271
2 29 2.8¥10°0 | 2 13
1 9225 3.0%10 0 | 2 7

Table 3: Likelihood of Occurrence of 2-round Iterative Characeristic

(r.0) finp]

0 « 0 with probability 1 [round 1]
® — T' with probability py [round 2]
I' — ® with probability po [round 3]
(@.0) foutput]

where ®, T represent 32-bit XOR vectors. Although the inputs and outputs are not the
same, one can concatenate this 3-round characteristic with itself interchanging ® and I' to
get a 6 round iterative characteristic such that the inputs and the outputs will be the same.

Since the probability per round for the best 2-round iterative characteristic is 277, a

3-round iterative characteristic needs to have po, = p1-p2 > 272! in order to be more useful

19



than the 2-round iterative characteristic. 3

A 3-round iterative characteristic is made up of three 1-round characteristics. In section
4.1, it was shown that the entries in the XOR table depend on the values of g(AX).
The most likely maximum entry when g(AX) = 1 is 2%° and hence the highest one-round
difference probability that is likely to occur in such a case is g% = 277, Similarly, as
suggested by the results of Table 3, the highest one-round difference probability that is
likely to occur when g(AX) = 2, 3 or 4 will be less than or equal to 2714, Hence, in order
for pa, = p1 - p2 > 272!, we only need to consider the case when p; = 277 and py = 277,
This means that g(I') = 1 and g(®) = 1. If the XOR input value of the round function F' is
denoted by AX and the output XOR value by AW, we can denote g(AW) as the number
of s-boxes in the next round that have non-zero XOR inputs when AW is used as the
XOR input. Consider € to be the event the XOR table contains a value of AW for which
g(AW) = 1 given that g(AX) = 1. Then it can be shown that, using the assumption of
independence between rows in the XOR. table, P(£) = 3.1x1072 [10]. Hence, the probability
of an s-box having a ® and I' so that they can be used in round number 2 of the 3-round
iterative characteristic is no greater than 3.1 % 1072, Therefore, s-boxes which cannot be
used in the 3-round iterative characteristics are plentiful and it would be easy to apply a

screening process on the s-boxes, taking time in O(2™), to ensure that event £ does not

3Note that our analysis does not consider that multiple characteristics may be used in a differential
attack by combining the chosen plaintexts into a structure such as a quartet or octet [4] . Using such a
structure reduces the number of chosen plaintexts and, hence, if multiple 3-round characteristics were used
where p; - p» = 27%, it might be possible to mount a more efficient differential attack than an attack using
a characteristic based on a 2-round iterative characteristic. However, it is also conceivable that multiple
2-round characteristics may be combined in a structure to reduce the number of plaintexts required in the
attack. In either case, while the number of chosen plaintexts required in the attack is reduced, it is a
relatively modest reduction. For example, an quartet structure based on 3 characteristics can be used to
reduce the number of chosen plaintexts by 2/3. Hence, we shall only be interested in comparing the relative
likelihoods of individual characteristics.
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occur. Hence, there would not be any 3-round iterative characteristics that would have a
better probability per round than the 2-round iterative characteristic.

In general, the format for a k-round iterative characteristic would involve a trivial round
where the input XOR. value of that round is zero, followed by k — 1 non-trivial rounds. Since
the trivial round would have a probability of 1 (zero XOR inputs always give zero XOR

outputs), the k-round iterative characteristic would thus have a probability of

k—1
P = Hpi. (22)
=1

where p; is the probability of the l-round characteristic in round ¢ + 1 of the k-round
characteristic.

The probability per round for the 2-round iterative characteristic is 277, and so an k-
round iterative characteristic would have a better probability per round than the 2-round
iterative characteristic only if po, > (2_7)k. This implies that p; = 277 for 1 = 1 to
k — 1. This results because the next best likely one-round difference probability is 274 and
the incorporation of just one such XOR difference would make po, have the same value
as (2*7)’6. Hence we need to have a l-round difference probability of 277 for each non-
trivial round. This means that for non-trivial rounds, the input pairs differ in at most 1
s-box and the output pairs differ in at most 1 s-box as well. This is equivalent to event £
and the screening process mentioned earlier would ensure that this event does not happen.
Hence, an k-round iterative characteristic that gives a better probability per round than

the 2-round iterative characteristic will not occur.
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4.3 Differential Characteristics of » Rounds

One can construct an r-round characteristic by concatenating the 2-round iterative
characteristic with itself. This r-round characteristic will then have a particular plaintext
XOR value AP and a probability pq, for a particular sequence of XOR output values to
appear from round 1 to round r. If a plaintext pair having XOR value AP does indeed
produce the same sequence of XOR values in the intermediate rounds as we would expect
from the r-round characteristic, then it is a right pair. Otherwise, it is a wrong pair.

By concatenating a 2-round iterative characteristic to produce an r-round characteristic,

the probability of a right pair occurring will be

po, =277 (23)

for even r. As a result, for a 6-round characteristic of the CAST-like cipher, the upper bound
on the probability of a right pair occurring is 27*2. A CAST-like cipher characteristic of 8

2756

rounds will reduce that probability further to , a value which is achieved for a 15-round

characteristic of DES.

5 Conclusion

In this paper, we have examined the resistance of a CAST-like encryption algorithm to
both linear cryptanalysis and differential cryptanalysis.

In our analysis of the resistance of the CAST-like cipher to linear cryptanalysis, we have
derived a bound on the probability of satisfaction of a linear approximation based on the
minimum nonlinearity of the s-boxes used in the round function of the CAST-like cipher.

Our results suggest that for randomly generated 8 x 32 s-boxes, a 64-bit CAST-like cipher
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consisting of 12 rounds has a better degree of resistance to the linear attack than 16 rounds
of DES.

In our analysis of the resistance of the CAST-like cipher to differential cryptanalysis, a
method for predicting the entries in the XOR table of the round function F' in a CAST-like
cipher using randomly generated s-boxes has been presented. Based on this method, we
have shown that by using randomly generated s-boxes and a simple screening process, the
best iterative characteristic available is the 2-round iterative characteristic. For a 64-bit
CAST-like algorithm using 8 x 32 s-boxes, the best 2-round iterative characteristic has a

2~ and this value is almost 70 times smaller than that of the best 2-round

probability of
iterative characteristic in DES, which has a probability of ﬁ As a result, an 8 round

characteristic of a CAST-like cipher will reduce the probability of the occurrence of a right

pair to 2756, a value which is better than a 15 round characteristic of DES.
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