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Abstract

The National Institute of Standards and Technol-
ogy (NIST) in the U.S. has initiated a process to de-
velop an Advanced Encryption Standard (AES) spec-
ifying a private-key encryption algorithm based on a
128-bit block size as a replacement for the Data En-
cryption Standard (DES). In this paper, we investi-
gate the efficiency of two AES candidates, RC6 and
CAST-256, from the hardware implementation per-
spective with Field Programmable Gate Arrays (FP-
GAs) as the target technology. Our analysis and syn-
thesis studies of the ciphers suggest that it would be
desirable for FPGA implementations to have a sim-
pler cipher design that makes use of simpler operations
that not only possess good cryptographic properties, but
also make the overall cipher design efficient from the
hardware implementation perspective.

1 Introduction

In the recent years, there has been a great need
for much improved techniques of securely transmit-
ting and storing information. The field of cryptog-
raphy encompasses some of these requirements and
has been the focus of a growing research effort. Un-
til recently, encryption products were frequently in the
form of specialized hardware. For example, encryption
devices plugged into the communications line and en-
crypted all the data going across the line. Although
software encryption is becoming more prevalent today,
hardware is still the embodiment of choice for many
applications.

Speed and security are important issues that play
in the favour of the hardware implementation of en-
cryption devices. Encryption algorithms involve many

complex operations on the message or plaintext bits.
Often these are not the type of operations that are in-
corporated into a typical desktop computer. The most
widely accepted private-key block cipher, the Data
Encryption Standard (DES) [1], introduced in 1977,
runs inefficiently on general purpose processors. Al-
though some cryptographers have tried to shape their
algorithms to suit software implementations, special-
ized hardware such as an encryption chip will likely
emerge as the winner in efficiency. Another key factor
that favours the hardware implementation of a block
cipher is security. An encryption algorithm being run
on a generalized computing machine has no physical
protection. On the other hand, hardware encryption
devices can be securely encapsulated to prevent this.
Other factors that suggest a hardware implementation
include cost, lower power consumption, and ease of in-
stallation.

The National Institute of Standards and Technol-
ogy (NIST) has initiated a process to develop a Fed-
eral Information Processing Standard (FIPS) for an
Advanced Encryption Standard (AES) [2] specifying
an encryption algorithm for the twenty-first century
as a replacement of DES. In this regard, the agency
has announced a request for candidate algorithm nom-
inations of AES. One of the important evaluation cri-
terion concerns the efficiency of the private-key block
cipher from the hardware implementation perspective.
RC6 [3] and CAST-256 [4] are among the fifteen candi-
date algorithms that have been presented to the first
round of the AES development phase. Both ciphers
are modifications of earlier generation ciphers (RC5
[5] and CAST-128 [6]) based on smaller (64-bit) block
sizes. Like most proposed private-key block ciphers,
RC6 and CAST-256 are clearly designed for efficient
implementation in software.



In this paper, we examine the issues associated with
the FPGA implementation of RC6 and CAST-256.
We chose FPGAs as our target hardware environment
because of their usefulness in building algorithm agile
applications [7], faster turnaround design time, and
the ability to easily implement scalable security with
variable architectural parameters.

2 Description of the Encryption Algo-
rithms

2.1 The RC6 Cipher

RC6-w/r/b, a general version of the RC6 cipher [3],
operates on units of four w-bit words, with the en-
cryption consisting of a nonnegative number of rounds
r. The user supplies a primary key of b bytes, where
0 < b < 255 and from this key, the key schedule
scheme of the RC6-w/r/b algorithm derives 2r + 4
subkeys, where each subkey is a w-bit word. These 2r
+ 4 subkeys are then stored in the array S9[0,....,.2r +
3]. This array of subkeys is used in both encryption
and decryption.

Encryption with the RC6 algorithm is described be-
low. RC6 works with four w-bit registers A, B, C, and
D which contain the initial input plaintext as well as
the output ciphertext at the end of the encryption.
The standard little endian convention is used for pack-
ing the data bytes into the input/output blocks. The
encryption block involves the following basic opera-
tions:

a @b Dbitwise exclusive-or of ubit words

a+ b integer addition modulo 2%

a x b integer multiplication modulo 2%

a < b rotate the w-bit word a to the left

by the amount given by the least significant
log, w bits of b

For the AES implementation of RC6, w = 32 and
r = 20. Fach of the four 32-bit registers A, B, C,
and D is updated after each round of encryption. At
the output of the 20-round encryption the four reg-
isters represent the ciphertext. The entire process of
encryption in RC6 algorithm is illustrated in Figure 1.

Decryption is similar, but involves reversing the or-
der of the subkeys, replacing left rotations by right
ones and replacing addition with subtraction. Since
the AES submission requires the cipher to operate on
32-bit words and there should be 20 rounds of encryp-
tion/decryption, this paper discusses the issues related
to hardware implementation of RC6-32/20/b version.
Note that for AES, b < 32 bytes (i.e. up to 256 bits)

B =B + 5[0]

D= D + S[1)

for(i=1;i<r;i++)

{

t=(Bx(2B+1)) < log,w
u= (D x (2D + 1)) < logy, w
A=((Aot) < u) + S[2i]
C=(Co®u) <t)+ S[2i+1]
(A’B’CJD) = (B’C7‘D7'A)

}
A=A+ S[2r+2]
C=C+S[2r+3]

Figure 1: Encryption with RC6-w/r/b

of key are alllowed as primary key. For details on the
key scheduling scheme refer to [3].

2.2 The CAST-256 Cipher

CAST-256 [4] is a private-key block cipher that
is a generalization of the basic “Feistel” network [8].
CAST-256 algorithm uses a 128-bit block size and a
256-bit primary key that is used in the algorithm’s key
schedule scheme to generate two sets of subkeys, each
of which is used per round: a 5-bit subkey K, is used
as a “rotation” key for round ¢ and a 32-bit subkey
K, is used as a “masking key” for round . There are
a total of 48 rounds of encryption.

Three different 32-bit round functions are used in
CAST-256. These round functions are defined as fol-
lows:

¢ Round Function (f1)

I= ((ng + D) < Kn)
0 = ((51[La] & S2[b]) — S5[Ic]) + Sa[la]

e Round Function (f2)

I=((Kme®D)<K,)

0 = ((S1[La] = S2[1b]) + Ss[1c]) © Sa[l4]
¢ Round Function (f3)

I =((Km, — D) < Ky,)

0 = (($1lLa] + S2[lb]) ® S3[Ic]) — Sa[la]

Here D is the 32-bit data input to the round func-
tion, I tol; are the most significant byte through the
least significant byte of I, respectively, S; is the 7*
substitution box or S-box, and O is the 32-bit output
of the round function. Each S-box is a nonlinear map-
ping of an 8-bit input to a 32-bit output [9]. Moreover,
“+” and “-” are addition and subtraction modulo 232
operations, “® ” is bitwise exclusive-OR operation,
and, finally, “u < v” is the rotation of u to left by the
value indicated by v.



for(i=0; i < 6; i ++)
{

C=Co fl(DaKT4i+17Km4i+1)
B=B® f2(C> KT‘4i+2’Km4i+2)
A=As f3(BJK"'4i+3’Km4i+3)
D=Deo fl(A7K’f‘4i+47Km4i+4)

}

for(i =6; 1 <12; i ++)

{
D=Deo fl(A7KT'4i+17Km4i+1)
A=A0Q f3(B7KT4i+27Km4i+2)
B=B® f2(C> KT'4i+37Km4i+3)
c=Co fl(DaKT4i+47Km4i+4)

}
Figure 2: Encryption with CAST-256

The CAST-256 encryption algorithm is illustrated
in Figure 2. The plaintext is stored in four 32-bit
input registers A, B, C, and D. There are 48 rounds
of encryption. In each round of encryption, a 32-bit
masking key and a 5-bit rotation key is used. The
output of the 48-round encryption is contained in the
four 32-bit registers A, B, C, and D as the ciphertext.

Decryption is identical to encryption except that
the masking and round keys derived from the primary
key K are used in the reverse order. Note that the 256-
bit primary key can be generated from smaller user
keys as outlined in the CAST-256 algorithm specifi-
cations [4]. Details of the key scheduling scheme for
CAST-256 are also outlined in [4].

3 Hardware Implementation Environ-
ment

3.1 FPGAs vs. ASICs

A new development in integrated circuits offers a
hardware implementation choice that is much more
flexible than Application Specific Integrated Circuits
(ASICs): large, fast, reconfigurable gate arrays, popu-
larly, known as Field Programmable Gate Arrays (FP-
GAs). These devices consist of arrays of configurable
logic blocks that implement logical functions of gates
and are easily reconfigurable. In contrast, ASICs pro-
vide only the functionality needed for a specific task.
A well-designed ASIC chip will support a particular
application for which it is designed, but not a slightly
modified version of the same application introduced
after the ASIC design is completed. Furthermore,
even if a modified ASIC can be developed, the origi-

nal hardware is too highly customized to be reused in
successive generations. In contrast, the configuration
of an FPGA can be easily reprogrammed to accom-
modate a design modification.

We have chosen FPGAs as the target technology for
realizing the RC6 and CAST-256 cryptographic algo-
rithms in hardware because of a number of reasons.
Replacing one cryptographic algorithm with another
is a trivial matter in software, but it is not in hard-
ware. But at the same time, hardware solutions can
offer improved performance in terms of speed, secu-
rity, and cost. As such the solution to this problem is
reconfigurable hardware and FPGAs are the answer.
In fact, FPGAs can be used to build algorithm agile
applications [7] . The term algorithm agility refers to
the fact that the same FPGA can be reprogrammed at
run time to support different algorithms. Other key
factors that favour the use of FPGAs for hardware
implementation of ciphers include faster turnaround
design time, scalable security, and variable architec-
tural parameters.

3.2 Development Environment

The design cycle and CAD tools used for the hard-
ware implementation of RC6 and CAST-256 algo-
rithms have been provided by Canadian Microelec-
tronics Corporation (CMC) [10]. The entire design
process can be divided into the following three stages:

e Generating the VHDL (IEEE 1076) descriptions
of the cipher design, employing different architecture
options. The functional VHDL simulation of the de-
sign is carried out using the Synopsys VSS simulator
version 1998.02 to verify the correct operation of the
cryptographic algorithm.

o Gate-level synthesis and logic optimization of
the design utilizing Synopsys Design Compiler version
1998.02 to produce a functionally equivalent schematic
in hardware.

e Place and route for a specific FPGA device fol-
lowed by a final verification of the design. The timing
simulation data is generated during this design stage
which is then used to carry out timing simulation for
the final verification of the design.

We chose Xilinx as the FPGA vendor and a XC4000
device family. In particular, we used XC40200XV-9-
BG560 as our target device. This particular FPGA
has a total of 7056 configurable logic blocks (CLBs),
which gives us a baseline with which we can measure
FPGA resource consumption. Xilinx Alliance Series
version 1.5 is used for place and route.
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Figure 3: RC6 Encryption in Hardware

4 Cipher Design Issues
4.1 Design of RC6

The block diagram representation of the RC6 en-
cryption realized in hardware is shown in Figure 3.
The RC6 core basically consists of four components,
namely, a 32-bit adder, a 32 x 32 “partial” integer
multiplier (i.e. the product is modulo 232), a 32-bit
XOR and a 32-bit barrel shifter. There is also an RC6
controller /state machine unit that controls the vari-
ous modes of operation of the cipher i.e. it determines
when the cipher is in the key-download mode, the data-
download mode, the data-encrypt mode, the idle mode
or the reset mode. The block diagram for the RC6
encryption also shows the logic (shift registers, multi-
plexers/demultiplexers, serial-in parallel-out (SIPO),
parallal-in serial-out (PISO) and parallel-in parallel-
out (PIPO) registers) associated with the datapath of
the cipher.

We will now consider the components associated
with RC6 core.

32-bit XOR

The timing and FPGA resource reports for the syn-
thesized 32-bit XOR reveal that the maximum delay
for data to be available at the output of the 32-bit
XOR is equal to 4.88 ns and total number of CLBs
used is equal to 16 (0.2 % of FPGA CLB resources).

32-bit Barrel Shifter

One of the major concerns in the design of the RC6
core has to do with the data-dependent rotations. We
had to look for an implementation that would take
constant time for these rotations, irrespective of the
size of the rotation, for otherwise, the RC6 algorithm
is vulnerable to the timing attack [11] that may lead
to breaking the cipher. The solution to this prob-
lem is a barrel shifter that can shift any number of
bits in one clock cycle. Synthesis results reveal that
our implementation of the 32-bit barrel shifter gives a
maximum delay of 4.88 ns for the data to be shifted
out. However, it uses 369 CLBs (5.2 % of the total
FPGA CLBs), which is significantly more than the
much slower serial shifter.

32-bit Adder

The implementation of a fast, low complexity 32-
bit adder involved the consideration of a number of
design choices. We first explored a 32-bit carry ripple
adder (CRA) implementation which gave a maximum
delay equal to 173.21 ns and used 32 CLBs (0.45 %
of the total CLBs). Hence, the CRA has a minimal
complexity but a large delay.

A carry lookahead adder (CLA) is the fastest of all
adders, but is not practically feasible for addition of
numbers greater than 8 bits, because of the very high
complexity and the limitations that arise from poten-
tially high fan-in and fan-out requirements. It is im-
practical for the 32-bit addition required.

The design of a 32-bit adder using hierarchical carry
lookahead, also known as block carry lookahead adder
(BCLA) [12] was also investigated. This design uses
eight 4-bit CLAs as the building blocks to take care
of high fan-in and fan-out requirements for a bigger
pure CLA. Although, the delay was reduced down to
70 ns, the design used a total of 60 CLBs, 0.85 % of
the total FPGA resources (an increase in the hardware
complexity by a factor of two).

We also considered a pure 32-bit carry select adder
(CSA) as well as a 32-bit carry select adder using a 4-
bit CRA as the basic unit. However, synthesis studies
using FPGAs revealed that a hybrid design is preferred
on the basis of its speed. This hybrid design uses a 4-
bit CLA as the basic unit in a 32-bit CSA. Our final
results show that this implementation choice for the
32-bit adder yields a maximum delay of 39.32 ns (an
improvement by a factor of 4.4 over the CRA imple-
mentation). The 32-bit hybrid adder, however, takes
up 197 CLBs (2.79 % of the FPGA resources).



32 x 32 “Partial” Integer Multiplier

This component is the most critical of all compo-
nents in the RC6 encryption core. We need a 32 x 32
“partial” integer multiplier to compute integer multi-
plication modulo 232. Our initial implementation of
the multiplier used a behavioural representation. The
synthesis results for this implentation of the partial
multiplier in FPGAs were not encouraging as it used
551 CLBs (7.8 % of the available CLBs) for the target
device. The synthesized multiplier had a maximum
delay of 294 ns, which was considered to be unaccept-
ably high. This led to the investigation of structural
design options for the multiplier. We have found the
Wallace tree [13] architecture to be more suitable for
the implementation of the partial multiplier in FPGAs
than other design options. The Wallace tree imple-
mentation reduced the maximum delay for the mul-
tiplier to 79 ns (an improvement by a factor of 3.8).
However, this implementation increases the hardware
complexity of the multiplier to 930 CLBs (13 % of the
available CLBs).

4.2 Design of CAST-256

The block diagram of CAST-256 encryption real-
ized in hardware is shown in Figure 4. The CAST-256
core basically consists of a generic round function that
realizes any of the three round functions f;, fe, or f3
depending on the particular round in progress. The
rest of the block diagram, as in the case of RC6 cipher,
illustrates the logic associated with the datapath and
the control path of the CAST-256 cipher.

Generic Round Function

The generic round function consists of four 32-bit
adder /subtractor /excusive-or units, a separate 32-bit
XOR, a 32-bit barrel shifter and the four 8 x 32 S-
boxes, namely, S, Sz, S3, and Sy. The CAST-256 con-
troller is used to control the flow of data through each
sub-component of the generic round function. The
design of the generic round function is modular and
purely structural. A decoding logic unit inside the ci-
pher’s main controller generates the necessary control
signals that decide the flow of data through the generic
round function for each round of encryption.

The hardware complexity of the cipher is primarily
due to the complex structures of the S-boxes. We have
implemented these S-boxes as table lookups. Each S-
box takes around 411 CLBs and has a maximum delay
of 62 ns. The generic round function requires a total
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Figure 4: CAST-256 Encryption in Hardware

of 3037 CLBs (43 % of the available FPGA resources)
and has a maximum delay of 202 ns.

5 Comparison of RC6 and CAST-256
Ciphers

Oue synthesis studies for implementation of RC6
and CAST-256 encryption in FPGAs yield the follow-
ing results. (It should be noted that we are assuming
that the subkeys for encryption are being generated
outside the FPGA using the key schedule scheme for
each cipher and that they are being downloaded into
the key storage unit designed for each cipher.)

e Neglecting the key setup and algorithm setup
times, our design of RC6 encryption in the XC40200
FPGA device yields a data encryption rate of about
37 Mbits/s. The hardware needed for the RC6 encryp-
tion is 4944 CLBs for the RC6 core plus 704 CLBs for
key storage purposes and another 64 CLBs for storing
the 128-bit input data. Besides this, there is al® some
data flow and control logic overhead (on the order of
750 CLBs). Thus the total FPGA resources required
is about 6450 CLBs or 91% of the available CLBs in
the target device.

e The hardware implementation of CAST-256 in
the XC40200 FPGA device yields a data encryption
rate of about 13 Mbits/s for a 48-round implementa-
tion, and about 26 Mbits/s for a 24-round implemen-
tation. The hardware needed for the CAST-256 en-



cryption is 3037 CLBs for the generic round function
plus 768 CLBs for “masking” keys storage and an-
other 120 CLBs for “rotation” keys storage purposes.
Besides this, there are also 64 CLBs for storing the
128-bit input data. The data flow and control logic
overhead is around 1000 CLBs. Thus a total of about
5052 CLBs or 72% of the available CLBs are required
to implement CAST-256.

6 Conclusions

In conclusion, it appears neither RC6 nor CAST-
256 are well suited for implementation in the targetted
Xilinx FPGA. The hardware complexity is high and
the speed low, particularly compared to similar imple-
mentations of DES [7].

Our simulation and synthesis studies reveal that
multiplication and addition are major bottlenecks as
far as speed of encryption in the RC6 cipher is con-
cerned. However, a faster implementation of RC6
can only be achieved at the expense of increasingly
large hardware complexity, which implies the use of
a high end FPGA device. Moreover, it appears that
implementation of RC6 in the targetted FPGA using
pipelining is found to be impractical from a hardware
complexity viewpoint.

CAST-256 encryption in FPGAs is found to be
slower than what we can achieve with the RC6 ci-
pher. At the same time, the hardware complexity of
CAST-256 cipher is roughly of the same order as RC6.
This is because the advantage of not having a multi-
plication operation is being offset by the use of four
S-boxes.

As a consequence of investigating the FPGA imple-
mentations of these two private-key block ciphers, we
suggest a much simpler cipher design that makes use
of simpler operations that not only possess good cryp-
tographic properties, but also make the overall design
efficient from the hardware implementation perspec-
tive. For example, by finding a suitable design that
reduces the hardware complexity, it will be possible
to effectively pipeline multiple rounds and thereby in-
crease the cipher speed for FPGA implementations.
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